CIESC Journal ›› 2017, Vol. 68 ›› Issue (8): 3177-3182.DOI: 10.11949/j.issn.0438-1157.20170281
Previous Articles Next Articles
LAN Ting, TONG Chudong, SHI Xuhua
Received:
2017-03-22
Revised:
2017-04-11
Online:
2017-08-05
Published:
2017-08-05
Supported by:
supported by the National Natural Science Foundation of China (61503204), the Natural Science Foundation of Zhejiang Province(Y16F030001) and the Natural Science Foundation of Ningbo (2016A610092).
蓝艇, 童楚东, 史旭华
通讯作者:
蓝艇
基金资助:
国家自然科学基金项目(61503204);浙江省自然科学基金项目(Y16F030001);宁波市自然科学基金项目(2016A610092)。
CLC Number:
LAN Ting, TONG Chudong, SHI Xuhua. Variable weighted principal component analysis algorithm and its application in fault detection[J]. CIESC Journal, 2017, 68(8): 3177-3182.
蓝艇, 童楚东, 史旭华. 变量加权型主元分析算法及其在故障检测中的应用[J]. 化工学报, 2017, 68(8): 3177-3182.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170281
[1] | GE Z, SONG Z, GAO F. Review of recent research on data-based process monitoring[J]. Ind. Eng. Chem. Res., 2013, 52(10):3543-3562. |
[2] | YIN S, DING S X, XIE X, et al. A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Trans. Ind. Electron., 2014, 61(11):6418-6428. |
[3] | 周乐, 宋执环, 侯北平, 等. 一种鲁棒半监督建模方法及其在化工过程故障检测中的应用[J]. 化工学报, 2017, 68(3):1109-1115. ZHOU L, SONG Z H, HOU B P, et al. Robust semi-supervised modelling method and its application to fault detection in chemical processes[J]. CIESC Journal, 2017, 68(3):1109-1115. |
[4] | 王磊, 邓晓刚, 徐莹, 等. 基于变量子域PCA的故障检测方法[J]. 化工学报, 2016, 67(10):4300-4308. WANG L, DENG X G, XU Y, et al. Fault detection method based on variable sub-region PCA[J]. CIESC Journal, 2016, 67(10):4300-4308. |
[5] | 童楚东, 史旭华. 基于互信息的PCA方法及其在过程监测中的应用[J]. 化工学报, 2015, 66(10):4101-4106. TONG C D, SHI X H. Mutual information based PCA algorithm with application in process monitoring[J]. CIESC Journal, 2015, 66(10):4101-4106. |
[6] | 江伟, 王振雷, 王昕. 基于混合分块DMICA-PCA的全流程过程监控方法[J]. 化工学报, 2017, 68(2):759-766. JIANG W, WANG Z L, WANG X. Plant-wide process monitoring based on mixed multiblock DMICA-PCA[J]. CIESC Journal, 2017, 68(2):759-766. |
[7] | TONG C, LAN T, SHI X. Double-layer ensemble monitoring of non-Gaussian processes using modified independent component analysis[J]. ISA Trans., 2017, 68:181-188. |
[8] | 胡永兵, 高学金, 李亚芬, 等. 基于仿射传播聚类子集主元分析的间歇过程监测方法[J]. 化工学报, 2016,67(5):1989-1997. HU Y B, GAO X J, LI Y F, et al. Subset multiway principal component analysis monitoring for batch process based on affinity propagation clustering[J]. CIESC Journal, 2016,67(5):1989-1997. |
[9] | RATO T J, REIS M S. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR)[J]. Chemom. Intell. Lab. Syst., 2013, 125(7):101-108. |
[10] | 韩敏,张占奎. 基于改进核主成分分析的故障检测与诊断方法[J]. 化工学报, 2015, 66(6):2139-2149. HAN M, ZHANG Z K. Fault detection and diagnosis method based on modified kernel principal component analysis[J]. CIESC Journal, 2015, 66(6):2139-2149. |
[11] | 童楚东, 蓝艇, 史旭华. 基于互信息的分散式动态PCA故障检测方法[J]. 化工学报, 2016, 67(10):4317-4323. TONG C D, LAN T, SHI X H. Fault detection by decentralized dynamic PCA algorithm on mutual information[J]. CIESC Journal, 2016, 67(10):4317-4323. |
[12] | LIU Y, ZHANG G, XU B. Compressive sparse principal component analysis for process supervisory monitoring and fault detection[J]. J. Process Control, 2017, 50:1-10. |
[13] | GE Z, SONG Z. Distributed PCA model for plant-wide process monitoring[J]. Ind. Eng. Chem. Res., 2013, 52(5):1947-1957. |
[14] | TONG C, LAN T, SHI X. Fault detection and diagnosis of dynamic processes using weighted dynamic decentralized PCA approach[J]. Chemom. Intell. Lab. Syst., 2017, 161:34-42. |
[15] | TONG C, SONG Y, YAN X. Distributed statistical process monitoring based on four-subspace construction and Bayesian inference[J]. Ind. Eng. Chem. Res., 2013, 52(29):9897-9907. |
[16] | JIANG Q, WANG B, YAN X. Multiblock independent component analysis integrated with Hellinger distance and Bayesian inference for non-Gaussian plant-wide process monitoring[J]. Ind. Eng. Chem. Res., 2015, 54(9):2497-2508. |
[17] | DOWNS J J, VOGEK E F. A plant-wide industrial process control problem[J]. Comput. Chem. Eng., 1993, 17(3):245-255. |
[18] | YIN S, DING S X, HAGHANI A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. J. Process Control, 2012, 22:1567-1581. |
[19] | QIN S J. Statistical process monitoring:basics and beyond[J]. J. Chemom., 2003, 17(7/8):480-502. |
[20] | GE Z, ZHANG M, SONG Z. Nonlinear process monitoring based on linear subspace and Bayesian inference[J]. J. Process Control, 2010, 20(5):676-688. |
[21] | GE Z, SONG Z. Multimode process monitoring based on Bayesian method[J]. J. Chemom., 2009, 23(12):636-650. |
[22] | LI N, YANG Y. Ensemble kernel principal component analysis for improved nonlinear process monitoring[J]. Ind. Eng. Chem. Res., 2015, 54(1):318-329. |
[23] | GE Z, SONG Z. Bayesian inference and joint probability analysis for batch process monitoring[J]. AIChE J., 2013, 59(10):3702-3713. |
[24] | HUANG J, YAN X. Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference[J]. Chemom. Intell. Lab. Syst., 2015, 148:115-127. |
[25] | 杨健, 宋冰, 谭帅, 等. 时序约束NPE算法在化工过程故障检测中的应用[J]. 化工学报, 2016, 67(12):5131-5139. YANG J, SONG B, TAN S, et al. Time constrained NPE for fault detection in chemical processes[J]. CIESC Journal, 2016, 67(12):5131-5139. |
[26] | SEVERSON K, CHAIWATANODOM P, BRAATZ R D. Perspectives on process monitoring of industrial systems[J]. Annu. Rev. Control, 2016, 42:190-200. |
[27] | ZHANG H, QI Y, WANG L, et al. Fault detection and diagnosis of chemical process using enhanced KECA[J]. Chemom. Intell. Lab. Syst., 2017, 161:61-69. |
[28] | BERNAL-DE-LAZARO J M, LLANES-SANTIAGO O, PRIETO-MORENO A, et al. Enhanced dynamic approach to improve the detection of small-magnitude faults[J]. Chem. Eng. Sci., 2016, 14:166-179. |
[29] | 薄翠梅, 韩晓春, 易辉. 基于聚类选择k近邻的LLE算法及故障检测[J]. 化工学报, 2016, 67(3):925-930. BO C M, HAN X C, YI H, et al. Neighborhood selection of LLE based on cluster for fault detection[J]. CIESC Journal, 2016, 67(3):925-930.et al. Subset multiway principal component analysis monitoring for batch process based on affinity propagation clustering[J]. CIESC Journal, 2016; 67(5):1989-1997. |
[9] | RATO T J, REIS M S. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR)[J]. Chemom. Intell. Lab. Syst., 2013, 125(7):101-108. |
[10] | Han Min, Zhang Zhankui. Fault detection and diagnosis method based on modified kernel principal component analysis[J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2015; 66(6):2139-2149. |
[11] | 童楚东, 蓝艇, 史旭华. 基于互信息的分散式动态PCA故障检测方法[J]. 化工学报, 2016, 67(10):4317-4323. TONG C, LAN T, SHI X. Fault detection by decentralized dynamic PCA algorithm on mutual information[J]. CIESC Journal, 2016, 67(10):4317-4323. |
[12] | LIU Y, ZHANG G, XU B. Compressive sparse principal component analysis for process supervisory monitoring and fault detection. J. Process Control, 2017, 50:1-10. |
[13] | GE Z, SONG Z. Distributed PCA model for plant-wide process monitoring[J]. Ind. Eng. Chem. Res., 2013, 52(5):1947-1957. |
[14] | TONG C, LAN T, SHI X. Fault detection and diagnosis of dynamic processes using weighted dynamic decentralized PCA approach[J]. Chemom. Intell. Lab. Syst., 2017, 161:34-42. |
[15] | TONG C, SONG Y, YAN X. Distributed Statistical Process Monitoring Based on Four-Subspace Construction and Bayesian Inference[J]. Ind. Eng. Chem. Res., 2013, 52(29):9897-9907. |
[16] | JIANG Q, WWANG B, YAN X. Multiblock independent component analysis integrated with Hellinger distance and Bayesian inference for non-Gaussian plant-wide process monitoring[J]. Ind. Eng. Chem. Res., 2015, 54(9):2497-2508. |
[17] | DOWNS J J, VOGEK E F. A plant-wide industrial process control problem[J]. Comput. Chem. Eng. 1993, 17(3):245-255. |
[18] | YIN S, DING S X, HAGHANI A, HAO H, ZHANG P. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. J. Process Control, 2012, 22:1567-1581. |
[19] | RATO T J, REIS M. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR). Chemom. Intell. Lab. Syst., 2013, 125:101-108. |
[20] | QIN S J. Statistical process monitoring:basics and beyond[J]. J. Chemom., 2003, 17(7-8):480-502. |
[21] | GE Z, ZHANG M, SONG Z. Nonlinear process monitoring based on linear subspace and Bayesian inference[J]. J.Process Control, 2010, 20(5):676-688. |
[22] | GE Z, SONG Z. Multimode process monitoring based on Bayesian method[J]. J. Chemom., 2009, 23(12):636-650. |
[23] | LI N, YANG Y. Ensemble kernel principal component analysis for improved nonlinear process monitoring[J]. Ind. Eng. Chem. Res., 2015, 54(1):318-329. |
[24] | GE Z, SONG Z. Bayesian inference and joint probability analysis for batch process monitoring[J]. AIChE J., 2013, 59(10):3702-3713. |
[25] | HUANG J, YAN X. Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference[J]. Chemom. Intell. Lab. Syst., 2015, 148:115-127. |
[26] | 杨健, 宋冰, 谭帅, 等. 时序约束NPE算法在化工过程故障检测中的应用[J]. 化工学报, 2016, 67(12):5131-5139. YANG J, SONG B, TAN S, et al. Time constrained NPE for fault detection in chemical processes[J]. CIESC Journal, 2016, 67(12):5131-5139. |
[27] | SEVERSON K, CHAIWATANODOM P, BRAATZ R D. Perspectives on process monitoring of industrial systems[J]. Annu. Rev. Control, 2016, 42:190-200. |
[28] | ZHANG H, Qi Y, WANG L, GAO X, WANG X. Fault detection and diagnosis of chemical process using enhanced KECA[J]. Chemom. Intell. Lab. Syst., 2017, 161:61-69. |
[29] | BERNAL-DE-LAZARO J M, LLANES-SANTIAGO O, PRIETO-MORENO A, et al. Enhanced dynamic approach to improve the detection of small-magnitude faults[J]. Chem. Eng. Sci., 2016, 14:166-179. |
[30] | 薄翠梅, 韩晓春, 易辉. 基于聚类选择k近邻的LLE算法及故障检测[J]. 化工学报), 2016, 67(3):925-930. BO C, HAN X, YI H, et al. Neighborhood selection of LLE based on cluster for fault detection[J]. CIESC Journal, 2016, 67(3):925-930. |
[1] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[2] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[3] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[4] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[5] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[6] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[7] | Guang WANG, Fashun SHAN, Yucheng QIAN, Jianfang JIAO. Incipient fault detection method for chemical process based on ensemble learning transfer entropy [J]. CIESC Journal, 2023, 74(7): 2967-2978. |
[8] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[9] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[10] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[11] | Bing SONG, Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN. Research on quality-related fault detection method based on VAE-OCCA [J]. CIESC Journal, 2023, 74(4): 1630-1638. |
[12] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[13] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[14] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[15] | Minghui YANG, Xiaoyue LIU, Xiaogang DENG, Mingyan LIAO, Chunwang HOU. Incipient fault detection for dynamic chemical processes based on weighted probability CVDA [J]. CIESC Journal, 2022, 73(9): 3963-3972. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||