[1] |
CHIN P,YANG L P,OLLIS D F. Formaldehyde removal from air via a rotating adsorbent combined with a photocatalyst reactor:Kinetic modeling[J]. J. Catal., 2006,237:29-37.
|
[2] |
SALTHAMMER T,MENTESE S,MARUTZKY R. Formaldehyde in the indoor environment[J]. Chem. Rev., 2010,110:2536-2572.
|
[3] |
SHIE J L,LEE C H,CHIOU C S,et al. Photodegradation kinetics of formaldehyde using light sources of UVA,UVC and UVLED in the presence of composed silver titanium oxide photocatalyst[J]. J. Hazard. Mater., 2008,155:164-172.
|
[4] |
李翠红.分子筛吸附剂对甲醛分子吸附性能的研究[D]. 大连:大连理工大学,2005. LI C H. Study on adsorption of formaldehyde molecule on zeolites[D]. Dalian:Dalian University of Technology,2005.
|
[5] |
SAEUNG S,BOONAMNUAYVITAYA V. Adsorption of formaldehyde vapor by amine-functionalized mesoporous silica materials[J]. Journal of Environmental Sciences. 2008,20:379-384.
|
[6] |
YE J,ZHU X,CHENG B,et al. Few-layered graphene-like boron nitride:a highly efficient adsorbent for indoor formaldehyde removal[J].Environ. Sci. Technol. Lett., 2017,4:20-25.
|
[7] |
BAI B,ARANDIYAN H,LI J. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4,2D-Co3O4,and 3D-Co3O4 catalysts[J]. Applied Catalysis B:Environmental, 2013,142/143:677-683.
|
[8] |
WANG Z,WANG W,ZHANG L,et al. Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature[J]. Catal. Sci. Technol.,2016,6:3845-3853.
|
[9] |
TANG X,LI Y,HUANG X,et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde:effect of preparation method and calcination temperature[J]. Applied Catalysis B:Environmental, 2006,62:265-273.
|
[10] |
YANG X,SHEN Y,YUAN Z,et al. Ferric ions doped 5A molecular sieves for the oxidation of HCHO with low concentration in the air at moderate temperatures[J]. Journal of Molecular Catalysis A:Chemical, 2005,237:224-231.
|
[11] |
LEE K P,TROCHIMOWICZ H J,REINHARDT C F. Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years[J]. Toxicology and Applied Pharmacology, 1985,79(2):179-192.
|
[12] |
POUILLEAU J,DEVILLIERS D,GARRIDO F,et al. Structure and composition of passive titanium oxide films[J]. Materials Science and Engineering:B, 1997,47(3):235-243.
|
[13] |
FUJISHIMA A,HASHIMOTO K,WATANABE T. TiO2 Photocatalysis:Fundamentals and Applications[M]. Tokyo:BKC Incorporated,1999.
|
[14] |
DENG X Q,ZHU B,LI X S,et al. Visible-light photocatalytic oxidation of CO over plasmonic Au/TiO2:unusual features of oxygen plasma activation[J]. Applied Catalysis B:Environmental, 2016,188:48-55.
|
[15] |
HAMEED A,ASLAM M,ISMAIL I M I,et al. Sunlight induced formation of surface Bi2O4-x-Bi2O3 nanocomposite during the photocatalytic mineralization of 2-chloro and 2-nitrophenol[J]. Applied Catalysis B:Environmental, 2015,163:444-451.
|
[16] |
ROMERO OCANA I,BELTRAM A,DELGADO JAEN J J,et al. Photocatalytic H2 production by ethanol photodehydrogenation:effect of anatase/brookite nanocomposites composition[J]. Inorg. Chim. Acta, 2015,431:197-205.
|
[17] |
BARRECA D,CARRARO G,WARWICK M E A,et al. Fe2O3-TiO2 nanosystems by a hybrid PE-CVD/ALD approach:controllable synthesis,growth mechanism,and photocatalytic properties[J]. CrystEngComm, 2015,17:6219-6226.
|
[18] |
GOMBAC V,SORDELLI L,MONTINI T,et al. CuOx-TiO2 photocatalysts for H2 production from ethanol and glycerol solutions[J]. J. Phys. Chem. A, 2010,114:3916-3925.
|
|
GOMBAC V,SORDELLI L,MONTINI T,et al. CuO-TiO2 photocatalysts for H2 production from ethanol and glycerol solutions[J]. J. Phys. Chem. A, 2010,114:3916-3925.
|
[19] |
SAYAMA K,MUKASA K,ABE R,et al. A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis[J]. J. Photochem. Photobiol. A:Chem, 2002,148:71-77.
|
[20] |
MA S S K,MAEDA K,HISATOMI T,et al. A redox-mediator-free solar-driven Z-scheme water-splitting system consisting of modified Ta3N5 as an oxygen-evolution photocatalyst[J]. Chem. Eur. J., 2013,19:7480-7486.
|
[21] |
ZHANG D Q,WEN M C,ZHANG S S,et al. Au nanoparticles enhanced rutile TiO2 nanorod bundles with high visible-light photocatalytic performance for NO oxidation[J]. Applied Catalysis B:Environmental, 2014,147:610-616.
|
[22] |
DENG X Q,LIU J L,LI X S,et al. Kinetic study on visible-light photocatalytic removal of formaldehyde from air over plasmonic Au/TiO2[J]. Catalysis Today, 2017,281:630-635.
|
[23] |
SARINA S,WACLAWIK E R,ZHU H. Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation[J]. Green Chem, 2013,15:1814.
|
[24] |
ZHANG X,LIU Q Q. Visible-light-induced degradation of formaldehyde over titania photocatalyst co-doped with nitrogen and nickel[J]. Applied Surface Science, 2008,254:4780-4785.
|
[25] |
翟瑞伟. 基于脉冲发光的高压氙灯电源分析与实验研究[D].天津:天津大学,2014. ZHAI R W. Research of an pulsed light source property and experimental analysis of Xe flash lamp[D]. Tianjin:Tianjin University,2014.
|
[26] |
王尔镇.光源的开发与环境保护[J]. 照明工程学报,1998,9(3):47-53. WANG E Z. Development of light sources and conservation of environment[J]. China Illuminating Engineering Journal, 1998,9(3):47-53.
|
[27] |
TAKAYANAGI M,IMAI Y,TAJIMA K, et al. Photocatalytic activity of Au/TiOx particles stimulated with visible light:gas-phase reactions of formaldehyde,acetaldehyde,and phenol[J]. Chemistry Letters, 2008,37:330-331.
|
[28] |
ZHENG Z F,TEO J,CHEN X, et al. Correlation of the catalytic activity for oxidation taking place on various TiO2 surfaces with surface OH groups and surface oxygen vacancies[J]. Chem. Eur. J., 2010,16:1202-1211.
|
[29] |
ZHAO D Z,LI X S,SHI C,et al. Low concentration formaldehyde removal from air using a cycled storage-discharge (CSD) plasma catalytic process[J]. Chemical Engineering Science, 2011,66:3922-3929.
|
[30] |
ZHU X B,CHANG D L,LI X S,et al. Inherent rate constants and humidity impact factors of anatase TiO2 film in photocatalytic removal of formaldehyde from air[J]. Chemical Engineering Journal, 2015,279:897-903.
|