CIESC Journal ›› 2017, Vol. 68 ›› Issue (12): 4764-4773.DOI: 10.11949/j.issn.0438-1157.20170621
Previous Articles Next Articles
WANG Chenping1, DUAN Yufeng1, SHE Min1, ZHU Chun1, YANG Zhizhong2
Received:
2017-05-15
Revised:
2017-06-26
Online:
2017-12-05
Published:
2017-12-05
Supported by:
supported by the National Key Research and Development Program of China (2016YFB0600604).
王晨平1, 段钰锋1, 佘敏1, 朱纯1, 杨志忠2
通讯作者:
段钰锋
基金资助:
国家重点研发计划项目(2016YFB0600604)。
CLC Number:
WANG Chenping, DUAN Yufeng, SHE Min, ZHU Chun, YANG Zhizhong. Mercury adsorption characteristics of petroleum coke activated by SO2[J]. CIESC Journal, 2017, 68(12): 4764-4773.
王晨平, 段钰锋, 佘敏, 朱纯, 杨志忠. SO2活化改性石油焦吸附剂的汞吸附特性[J]. 化工学报, 2017, 68(12): 4764-4773.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170621
[1] | ZHOU Q, DUAN Y F, ZHU C, et al. In-flight mercury removal and cobenefit of SO2 and NO reduction by NH4Br impregnated activated carbon injection in an entrained flow reactor[J]. Energy & Fuel, 2015, 29:8118-8125. |
[2] | LEE S H, RHIM Y J, CHO S P, et al. Carbon-based novel sorbent for removing gas-phase mercury[J]. Fuel, 2006, 85(2):219-226. |
[3] | 缪超, 宋爱萍. 我国高硫石油焦市场现状及预测[J]. 石油规划设计, 2012, 23(1):16-22. LIAO C, SONG A P. Situation and forecast of high sulfur petroleum coke market in China[J]. Petroleum Planning & Engineering, 2012, 23(1):16-22. |
[4] | Zhuang Y, Thompson J S, Zygarlicke C J, et al. Impact of calcium chloride addition on mercury transformations and control in coal flue gas[J]. Fuel, 2007, 86(15):2351-2359. |
[5] | 赵可, 张华伟, 陈江艳, 等. 改性石油焦脱除单质汞的实验研究[J]. 山东科技大学学报(自然科学版), 2016, 35(4):69-73. ZHAO K, ZHANG H W, CHEN J Y, et al. Removal of elemental mercury by the modified petroleum coke[J]. Journal of Shandong University of Science and Technology(Natural Science), 2016, 35(4):69-73. |
[6] | 洪亚光, 段钰锋, 朱纯, 等. 载溴高硫石油焦活性炭脱汞实验研究[J]. 中国电机工程学报, 2014, 34(11):1762-1768. HONG Y g, DUAN Y f, ZHU C, et al. Experimental study on mercury removal of high-sulfur petroleum coke activated carbon impregnated with bromine[J]. Proceedings of the CSEE, 2014, 34(11):1762-1768. |
[7] | 卓海波. 石油焦制备活性炭工艺条件的优化及孔结构表征[D]. 青岛:中国石油大学, 2007. ZHUO H B. Optimizing process for preparation of activated carbon from petroleum coke and characterization of its porosity[D]. Qingdao:China University of Petroleum, 2007. |
[8] | Gaur v, Asthana r, Verma n. Removal of SO2 by activated carbon fibers in the presence of O2 and H2O[J]. Carbon, 2006, 44:46-60. |
[9] | 纪罗军, 金苏闵. 我国有色金属及烟气制酸环保技术进展与展望[J]. 硫酸工业, 2016, (4):1-8. JI L J, JIN S M. Environmental protection technical progress and outlook of China's nonferrous metallurgy and metallurgical acid production[J]. Sulphuric Acid Industry, 2016, (4):1-8. |
[10] | Stacy W O, Vastola F J, Walker Jr P L. Interaction of sulfur dioxide with active carbon[J]. Carbon, 1968, 6(6):917-923. |
[11] | Asasian N, Kaghazchi T, Faramarzi A, et al. Enhanced mercury adsorption capacity by sulfurization of activated carbon with SO2 in a bubbling fluidized bed reactor[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, (45):1588-1596. |
[12] | Yang C. Preparation, characterization and application of novel adsorbent from petroleum coke activated by sulfur dioxide[D]. Toronto:University of Toronto, 2002. |
[13] | Morris E A, Jia C Q. Effects of O2 on characteristics of sulfur added to petroleum coke through reaction with SO2[J]. Industrial and Engineering Chemistry Research, 2010, 49:12709-12717. |
[14] | Morris E A, Choi R, Jia C Q. Sulfur dioxide as an activating agent for sulfur-impregnated activated carbon produced from dense petroleum coke[J]. Journal of Sulfur Chemistry, 2013, 34(4):358-369. |
[15] | Wei Y Y, Yu D Q, Tong S T, et al. Effects of H2SO4 and O2 on Hg0 uptake capacity and reversibility of sulfur-impregnated activated carbon under dynamic conditions[J]. Environmental Science and Technology, 2015, 49:1706-1712. |
[16] | 杜鸿飞, 段钰锋, 佘敏. 高硫石油焦热解过程及硫形态的变化特性[J]. 化工进展, 2016, 35(8):2420-2426. DU H F, DUAN Y F, SHE M. Research on pyrolysis process of high sulfur petroleum coke and the changes of sulfur species[J]. Chemical Industry and Engineering Progress, 2016, 35(8):2420-2426. |
[17] | Humeres E, Moreira R F P M, Peruch M G B. Reduction of SO2 on different carbons[J]. Carbon, 2002, 40(5):751-760. |
[18] | Humeres E, Moreira R F P M. Kinetics and mechanisms in flow systems:reduction of SO2 on carbons[J]. Journal of Physical Organic Chemistry, 2012, 25(11):1012-1026. |
[19] | Humeres E, Debacher N A, Smaniotto A, et al. Selective insertion of sulfurdioxide reduction intermediates on grapheme oxide[J]. Langmuir, 2014, 30(15):4301-4309. |
[20] | Smaniotto A, Humeres E, Debacher N A, et al. Interconversion and selective reactivity of sulfur dioxide reduction intermediates inserted on graphene oxide[C]//15th European Symposium on Organic Reactivity (ESOR). Kiel, Germany, 2015. |
[21] | Humeres E, Peruch M D B, Moreira R F P M, et al. Reduction of sulfur dioxide on carbons catalyzed by salts[J]. International Journal of Molecular Sciences, 2005, 6(1/2):130-142. |
[22] | Humeres E, Castro K M, Moreira R F P M, et al. Reactivity of the thermally stable intermediates of the reduction of SO2 on carbons and mechanisms of insertion of organic moieties in the carbon matrix[J]. Journal of Physical Chemistry, 2008, 112(2):581-589. |
[23] | Aronniemi M, Sainio J, Lahtinen J. Chemical state quantification of iron and chromium oxides using XPS the effect of the background subtraction method[J]. Surface Science, 2005, 578(1/2/3):108-123. |
[24] | Pietrzakr, Wachowska H. The influence of oxidation with HNO3 on the surface composition of high sulphur coals XPS study[J]. Fuel Process. Technol., 2006, 87(11):1021-1029. |
[25] | Puziy A M, Poddubnaya O I, Socha R P, et al. XPS and NMR studies of phosphoric acid activated carbons[J]. Carbon, 2008, 46(15):2113-2123. |
[26] | 何川. 高硫石油焦脱硫技术研究[D]. 长沙:中南大学, 2013. HE C. Study on desulfurization technology of high-sulfur petroleum coke[D]. Changsha:Central South University, 2013. |
[27] | Zhang H, Zhao J T, Fang Y T, et al. Catalytic oxidation and stabilized adsorption of elemental mercury from coal-derived fuel gas[J]. Energy and Fuel, 2012, 26:1629-1637. |
[28] | Yao Y X, Velpari V, Economy J. Design of sulfur treated activated carbon fibers for gas phase elemental mercury removal[J]. Fuel, 2014, 116:560-565. |
[29] | Zhang B, Xu P, Qiu Y, et al. Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases[J]. Chemical Engineering Journal, 2015, 263:1-8. |
[30] | Tong Li, XU W Q, QI H, et al. Enhanced effect of O/N groups on the Hg0 removal efficiency over the HNO3-modified activated carbon[J]. Acta Physico-Chimica Sinica, 2015, 31(3):512-518. |
[31] | Liu J, Cheney M A, Wu F, et al. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces[J]. Journal of Hazardous Materials, 2011, 186(1):108-133. |
[32] | Liu W, Vidic R D. Impact of flue gas conditions on mercury uptake by sulfur-impregnated activated carbon[J]. Environmental Science and Technology, 2004, 34:154-159. |
[33] | SUN P, ZHANG B, ZENG X B, et al. Deep study on effects of activated carbon's oxygen functional groups for elemental mercury adsorption using temperature programmed desorption method[J]. Fuel, 2017, 200:100-106. |
[34] | 沈彩琴. 活性炭纤维表面吸附汞机理的密度泛函理论研究[D]. 杭州:浙江大学, 2015. SHEN C Q. Density functional theory study on the mechanism of mercury adsorption by activated carbon fiber[D]. Hangzhou:Zhejiang University, 2015. |
[35] | SHAO H Z, LIU X W, ZHOU Z J, et al. Elemental mercury removal using a novel KI modified bentonite supported by starch sorbent[J]. Chemical Engineering Journal, 2016, 29:306-316. |
[36] | Li Y H, Lee C W, Gullett B K. Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption[J]. Fuel, 2008, 82:451-457. |
[37] | Karatepe N, Orba I, Yavuz R, et al. Sulfur dioxide adsorption by activated carbon having different textural and chemical properties[J]. Fuel, 2008, 87:3207-3215. |
[38] | Rumayor M, Fernandez-Miranda N, Lopez-Anton M A, et al. Application of mercury temperature programmed desorption (HgTPD) to ascertain mercury/char interactions[J]. Fuel Processing Technology, 2015, 132:9-14. |
[39] | Stavropoulous G G, Samaras P, Sakellaropoulos G P. Effect of activated carbons modification on porosity, surface structure and phenol adsorption[J]. Journal of Hazardous Materials, 2008, 151(2/3):414-421. |
[40] | Hall B, Schager P, Lindqvist O. Chemical reactions of mercury in combustion flue gases[J]. Water, Air, Soil Pollut., 1991, 56(1):3-14. |
[41] | 吕维阳, 刘盛余, 能子礼超, 等. 载硫活性炭脱除天然气中单质汞的研究[J]. 中国环境科学, 2016, 36(2):382-389. LÜ W Y, LIU S Y, NENGZI L C, et al. Remove elemental mercury by sulfur-impregnated activated carbon in natural gas[J]. China Environmental Science, 2016, 36(2):382-389. |
[42] | Yang J P, Zhao Y C, Zhang J Y, et al. Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash (3):Regeneration performance in realistic flue gas atmosphere[J]. Fuel, 2016, 173:1-7. |
[1] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[2] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[3] | Yuhao CHEN, Xiaoping CHEN, Jiliang MA, Cai LIANG. Gaseous pollutants emissions from rotary kiln combustion of municipal sewage sludge [J]. CIESC Journal, 2023, 74(5): 2170-2178. |
[4] | ZHOU Ye, XIAO Huixia, WANG Yifei, YU Guangsuo. Study on improving slurryability of lignite based on coal blending and surface modification [J]. CIESC Journal, 2021, 72(4): 2233-2240. |
[5] | Xiaoqing YANG,Quanfei LIAO,Yun YI,Chunliang YANG,Tianxiang ZHAO,Xingbang HU,Fei LIU. Study on performance and mechanism of triethylene glycol dimethyl ether for capturing low concentration SO2 [J]. CIESC Journal, 2020, 71(11): 5052-5058. |
[6] | Yating ZHANG,Wenjie XIONG,Tianxiang ZHAO,Chenfei YAO,Yucheng DING,Xiaomin ZHANG,Youting WU,Xingbang HU. High capacity absorption of SO2 using imidazole ionic liquid mixtures [J]. CIESC Journal, 2020, 71(11): 5035-5042. |
[7] | Xiaoxia DENG, Lei GONG, Xiaobang LIU, Dongshun DENG. Study on the capture of low pressure SO2 by imidazole-based ternary deep eutectic solvents [J]. CIESC Journal, 2020, 71(1): 368-375. |
[8] | Runxia CAI, Yiqun HUANG, Lu CHENG, Dongfang LI, Chung-hwan JEON, Hairui YANG, Junfu LYU, Man ZHANG. Attrition of limestone during fluidized bed calcination and sulfation [J]. CIESC Journal, 2019, 70(8): 3086-3093. |
[9] | Xiaoxue CHEN, Min SONG, Fanyue MENG, Yuexing WEI. Mechanism study on SO2 poisoning of Fe x MnCe1-AC catalyst for low-temperature SCR [J]. CIESC Journal, 2019, 70(8): 3000-3010. |
[10] | Lulu WANG, Tao SONG, Jiang ZHANG, Yuanyuan DUAN, Laihong SHEN. Simulation of chemical looping gasification of high-sulfur petroleum coke for syngas production coupled with recycling sulfur in 10 MWth system [J]. CIESC Journal, 2019, 70(6): 2279-2288. |
[11] | Donghai AN, Xiaolin HAN, Xingxing CHENG, Binxuan ZHOU, Ying ZHENG, Yong DONG. Effect mechanisms of different flue gas on adsorption of mercury by powder activated coke [J]. CIESC Journal, 2019, 70(4): 1575-1582. |
[12] | CUI Jian, DUAN Lunbo, ZHAO Changsui. Emission characteristics of sulfurous pollutant from circulating fluidized bed boilers co-firing petroleum coke and coal [J]. CIESC Journal, 2018, 69(5): 2158-2165. |
[13] | LU Yao, DIAO Yongfa, CHEN Chen, LI Xiaoquan, CHEN Shanshan. Oxidation mechanism of Hg0 in flue gas on brominated petroleum coke [J]. CIESC Journal, 2018, 69(10): 4394-4401. |
[14] | SHEN Wenfeng, XIANG Baixiang, ZHANG Hai, ZHANG Yang, LÜ Junfu. Numerical simulation on formation of SO3 during SNCR process in pulverized coal-fired boiler [J]. CIESC Journal, 2017, 68(8): 3225-3231. |
[15] | LIU Ming, SHEN Zhongjie, HAN Dong, LIANG Qinfeng, XU Jianliang, LIU Haifeng. In-situ gasification characteristics of a petroleum coke with CO2 at high temperature [J]. CIESC Journal, 2017, 68(4): 1622-1628. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||