[1] |
STEIN-BRZOZOWSKA G, NORLING R, VIKLUND P, et al. Fireside corrosion during oxyfuel combustion considering various SO2 contents[J]. Energy Procedia, 2014, 51:135-147.
|
[2] |
DAHL L. Corrosion in flue gas desulfurization plants and other low temperature equipment[J]. Materials and Corrosion, 1992, 43(6):298-304.
|
[3] |
MATSUDA S, KAMO T, KATO A, et al. Deposition of ammonium bisulfate in the selective catalytic reduction of nitrogen oxides with ammonia[J]. Industrial & Engineering Chemistry Product Research and Development, 1982, 21(1):48-52.
|
[4] |
MOSER R E. SO3's impacts on plant O&M(Ⅰ)[J]. Power, 2006, 150(8):40.
|
[5] |
HE P, WU J, JIANG X, et al. Effect of SO3 on elemental mercury adsorption on a carbonaceous surface[J]. Applied Surface Science, 2012, 258(22):8853-8860.
|
[6] |
ADAMS B, SENIOR C. Curbing the blue plume:SO3 formation and mitigation[J]. Power, 2006, 150(4):39-42.
|
[7] |
束航, 张玉华, 杨林军, 等. SCR烟气脱硝对PM2.5排放特性的影响机制研究[J]. 燃料化学学报, 2015, 43(12):1510-1515. SHU H, ZHANG Y H, YANG L J, et al. Effects of SNCR-DeNOx system on emission characteristics of fine particles[J]. Journal of Fuel Chemistry and Technology, 2015, 43(12):1510-1515.
|
[8] |
FERNANDO R. SO3 Issues for Coal-fired Plant[M]. London:IEA Coal Research Centre, 2003.
|
[9] |
高岩, 栾涛, 彭吉伟, 等. 燃煤电厂真实烟气条件下SCR催化剂脱硝性能[J]. 化工学报, 2013, 64(7):2611-2618. GAO Y, LUAN T, PENG J W, et al. DeNOx performance of SCR catalyst for exhaust gas from coal-fired power plant[J]. CIESC Journal, 2013, 64(7):2611-2618.
|
[10] |
肖海平, 董琳, 宁翔. Fe2O3对SO2氧化的异相催化作用[J]. 中国电机工程学报, 2016, 36(21):5866-5872. XIAO H P, DONG L, NING X. Heterogeneous catalytic mechanism of SO2 oxidation with Fe2O3[J]. Proceedings of the CSEE, 2016, 36(21):5866-5872.
|
[11] |
MARIER P, DIBBS H P. The catalytic conversion of SO2 to SO3 by fly ash and the capture of SO2 and SO3 by CaO and MgO[J]. Thermochimica Acta, 1974, 8(1/2):155-165.
|
[12] |
AHN J, OKERLUND R, FRY A, et al. Sulfur trioxide formation during oxy-coal combustion[J]. International Journal of Greenhouse Gas Control, 2011, 5:S127-S135.
|
[13] |
SPÖRL R, MAIER J, BELO L, et al. Mercury and SO3 emissions in oxy-fuel combustion[J]. Energy Procedia, 2014, 63:386-402.
|
[14] |
郑楚光, 赵永椿, 郭欣. 中国富氧燃烧技术研发进展[J]. 中国电机工程学报, 2014, 34(23):3856-3864. ZHENG C G, ZHAO Y C, GUO X. Research and development of oxy-fuel combustion in China[J]. Proceedings of the CSEE, 2014, 34(23):3856-3864.
|
[15] |
SRIVASTAVA R K, MILLER C A, ERICKSON C, et al. Emissions of sulfur trioxide from coal-fired power plants[J]. Journal of the Air & Waste Management Association, 2004, 54(6):750-762.
|
[16] |
FLEIG D, ANDERSSON K, JOHNSSON F, et al. Conversion of sulfur during pulverized oxy-coal combustion[J]. Energy & Fuels, 2011, 25(2):647-655.
|
[17] |
FLEIG D, ALZUETA M U, NORMANN F, et al. Measurement and modeling of sulfur trioxide formation in a flow reactor under post-flame conditions[J]. Combustion and Flame, 2013, 160(6):1142-1151.
|
[18] |
李穹, 吴玉新, 杨海瑞, 等. SNCR脱硝特性的模拟及优化[J]. 化工学报, 2013, 64(5):1789-1796. LI Q, WU Y X, YANG H R, et al. Simulation and optimization of SNCR process[J]. CIESC Journal, 2013, 64(5):1789-1796.
|
[19] |
CHEMKIN-PRO. Release 15131, Reaction Design[CP]. San Diego.
|
[20] |
HEMBERGER R, MURIS S, PLEBAN K U, et al. An experimental and modeling study of the selective noncatalytic reduction of NO by ammonia in the presence of hydrocarbons[J]. Combustion and Flame, 1994, 99(3):660-668.
|
[21] |
张彦文, 蔡宁生. 加入甲烷促进选择性非催化还原反应的机理验证和分析[J]. 中国电机工程学报, 2008, 28(2):49-54. ZHANG Y W, CAI N S. Mechanism validation and analysis of the selective non-catalytic reduction reaction with methane additive[J]. Proceedings of the CSEE, 2008, 28(2):49-54.
|
[22] |
SENIOR C L, SAROFIM A F, ZENG T, et al. Gas-phase transformations of mercury in coal-fired power plants[J]. Fuel Processing Technology, 2000, 63(2):197-213.
|
[23] |
GLARBORG P, KUBEL D, DA-JOHANSEN K, et al. Impact of SO2 and NO on CO oxidation under post-flame conditions[J]. International Journal of Chemical Kinetics, 1996, 28(10):773-790.
|
[24] |
MENDIARA T, GLARBORG P. Ammonia chemistry in oxy-fuel combustion of methane[J]. Combustion and Flame, 2009, 156(10):1937-1949.
|
[25] |
MUELLER M A, YETTER R A, DRYER F L. Kinetic modeling of the CO/H2O/O2/NO/SO2 system:implications for high pressure fall off in the SO2 + O (+ M)=SO3 (+ M) reaction[J]. International Journal of Chemical Kinetics, 2000, 32(6):317-339.
|
[26] |
ALZUETA M U, BILBAO R, GLARBORG P. Inhibition and sensitization of fuel oxidation by SO2[J]. Combustion and Flame, 2001, 127(4):2234-2251.
|
[27] |
YILMAZ A, HINDIYARTI L, JENSEN A D, et al. Thermal dissociation of SO3 at 1000-1400 K[J]. The Journal of Physical Chemistry A, 2006, 110(21):6654-6659.
|
[28] |
RASMUSSEN C L, GLARBORG P, MARSHALL P. Mechanisms of radical removal by SO2[J]. Proceedings of the Combustion Institute, 2007, 31(1):339-347.
|
[29] |
HINDIYARTI L, GLARBORG P, MARSHALL P. Reactions of SO3 with the O/H radical pool under combustion conditions[J]. The Journal of Physical Chemistry A, 2007, 111(19):3984-3991.
|
[30] |
GIMÉNEZ-LÓPEZ J, MARTÍNEZ M, MILLERA A, et al. SO2 effects on CO oxidation in a CO2 atmosphere, characteristic of oxy-fuel conditions[J]. Combustion and Flame, 2011, 158(1):48-56.
|