[1] |
GARCIA-ALVAREZ D, FUENTE M J, SAINZ G I. Fault detection and isolation in transient states using principal component analysis[J]. Journal of Process Control, 2012, 22 (3): 551-563.
|
[2] |
QIN S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36 (2): 220-234.
|
[3] |
CAI L F, TIAN X M, CHEN S. A process monitoring method based on noisy independent component analysis[J]. Neurocomputing, 2014, 127 (3): 231-246.
|
[4] |
GENG Z Q, ZHU Q X. Multiscale nonlinear principal component analysis and its application for chemical process monitoring[J]. Industrial and Engineering Chemistry Research, 2005, 44 (10): 3585-3593.
|
[5] |
NGUYEN V H, GOLINVAL J C. Fault detection based on kernel principal component analysis[J]. Engineering Structures, 2010, 32 (11): 3683-3691.
|
[6] |
ZHAO C H, GAO F R. Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 133 (6): 1-16.
|
[7] |
ZHANG Y W, ZHANG L J, ZHANG H L. Fault detection for industrial processes[J]. Mathematical Problems in Engineering, 2012, 2012 (1): 1-18.
|
[8] |
WISKOTT L, SEJNOWSKI T J. Slow feature analysis: unsupervised learning of invariances[J]. Neural Computation, 2002, 14 (4): 715-770.
|
[9] |
WISKOTT L. How to solve classification and regression problems on high-dimensional data with a supervised extension of slow feature analysis[J]. The Journal of Machine Learning Research, 2013, 14 (1): 3683-3719.
|
[10] |
WU C, DU B, ZHANG L. Slow feature analysis for change detection in multispectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (5): 2858-2874.
|
[11] |
BOHMER W, GRUNEWALDER S, NICKISCH H, et al. Regularized sparse kernel slow feature analysis[C]//Proceedings of the 2011 European Conference on Machine Learning and Knowledge Discovery in Databases. Athens, 2011: 235-248.
|
[12] |
HUANG Y P, ZHAO J L, LIU Y H, et al. Nonlinear dimensionality reduction using a temporal coherence principle[J]. Information Science, 2011, 181 (16): 3284-3307.
|
[13] |
ZHANG Z, TAO D. Slow feature analysis for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34 (3): 436-450.
|
[14] |
ZHANG H Y, TIAN X M, CAI L F. Nonlinear process fault diagnosis using kernel slow feature discriminant analysis[C]//The 9th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes. Paris, 2015, 48 (21): 607-612.
|
[15] |
HUANG Y P, ZHAO J L, TIAN M, et al. Slow feature discriminant analysis and its application on handwritten digit recognition[C]//Proceedings of International Joint Conference on Neural Networks. Atlanta, 2009: 1294-1297.
|
[16] |
SRIVASTAVA C. Support vector data description[J]. Machine Learning, 2004, 54 (1): 45-66.
|
[17] |
CAI L F, TIAN X M. A new fault detection method for non-Gaussian process based on robust independent component analysis[J]. Process Safety and Environmental Protection, 2014, 92 (6): 645-658.
|