[1] |
JIANG Q C, YAN X F. Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring[J]. AIChE Journal, 2014, 60(3):949-965.
|
[2] |
HU Y, MA H H, SHI H B. Enhanced batch process monitoring using just-in-time-learning based kernel partial least squares[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 123(3):15-27.
|
[3] |
RASHID M M, YU J. Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach[J]. Industrial & Engineering Chemistry Research, 2012, 51(33):10910-10920.
|
[4] |
ZHAO C H, SUN Y X. Step-wise sequential phase partition (SSPP) algorithm based statistical modeling and online process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 125(5):109-120.
|
[5] |
赵春晖, 王福利, 姚远, 等. 基于时段的间歇过程统计建模、在线监测及质量预报[J]. 自动化学报, 2010, 36(3):366-374. ZHAO C H, WANG F L, YAO Y, et al. Phase-based statistical modeling, online monitoring and quality prediction for batch processes[J]. Acta Automatica Sinica, 2010, 36(3):366-374.
|
[6] |
张建明, 葛志强, 谢磊, 等. 基于支持向量数据描述的非高斯过程故障重构与诊断[J]. 化工学报, 2009, 60(1):168-171. ZHANG J M, GE Z Q, XIE L, et al. Non-Gaussian process monitoring and fault reconstruction and diagnosis based on SVDD[J]. CIESC Journal, 2009, 60(1):169-171.
|
[7] |
王培良, 葛志强, 宋执环. 基于迭代多模型ICA-SVDD的间歇过程故障在线监测[J]. 仪器仪表学报, 2009, 30(7):1347-1352. WANG P L, GE Z Q, SONG Z H. Online fault monitoring for batch processes based on adaptive multi-model ICA-SVDD[J]. Chinese Journal of Scientific Instrument, 2009, 30(7):1347-1352.
|
[8] |
MACGREGOR J F, KOURTI T. Statistical process control of multivariate processes[J]. Control Engineering Practice, 1995, 3(3):403-414.
|
[9] |
KITTIWACHANA S, FERREIRA D L S, LLOYD G R, et al. One class classifiers for process monitoring illustrated by the application to online HPLC of a continuous process[J]. Journal of Chemometrics, 2010, 24(3/4):96-110.
|
[10] |
KITTIWACHANA S, FERREIRA D L S, FIDO L A, et al. Self-organizing map quality control index[J]. Analytical Chemistry, 2010, 82(14):5972-5982.
|
[11] |
NING X H, TSUNG F G. A density-based statistical process control scheme for high-dimensional and mixed-type observations[J]. ⅡE Transactions, 2012, 44(4):301-311.
|
[12] |
NOMIKOS P, MACGREGOR J F. Monitoring batch processes using multiway principal component analysis[J]. AIChE Journal, 1994, 40(8):1361-1375.
|
[13] |
NOMIKOS P, MACGREGOR J F. Multi-way partial least squares in monitoring batch processes[J]. Chemometrics & Intelligent Laboratory Systems, 1995, 30(1):97-108.
|
[14] |
CHANG K Y, LEE J M, VANROLLEGHEM P A, et al. On-line monitoring of batch processes using multiway independent component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2004, 71(2):151-163.
|
[15] |
LU N Y, GAO F R, WANG F L. Sub-PCA modeling and on-line monitoring strategy for batch processes[J]. AIChE Journal, 2004, 50(1):255-259.
|
[16] |
YAO Y, GAO F R. A survey on multistage/multiphase statistical modeling methods for batch processes[J]. Annual Reviews in Control, 2009, 33(2):172-183.
|
[17] |
KANG J H, YU J, KIM S B. Adaptive nonparametric control chart for time-varying and multimodal processes[J]. Journal of Process Control, 2016, 37:34-45.
|
[18] |
GANI W, TALEB H, LIMAM M. An assessment of the kernel-distance-based multivariate control chart through an industrial application[J]. Quality and Reliability Engineering International, 2011, 27(4):391-401.
|
[19] |
GE Z Q, SONG Z H. Bagging support vector data description model for batch process monitoring[J]. Journal of Process Control, 2013, 23:1090-1096.
|
[20] |
LEE J M, YOO C K, LEE I B. Fault detection of batch processes using multiway kernel principal component analysis[J]. Computers & Chemical Engineering, 2004, 28(9):1837-1847.
|
[21] |
ZHANG Y W, HU Z Y. On-line batch process monitoring using hierarchical kernel partial least squares[J]. Chemical Engineering Research and Design, 2011, 89(10):2078-2084
|
[22] |
SUN R X, TSUNG F G. A kernel-distance-based multivariate control chart using support vector methods[J]. International Journal of Production Research, 2003, 41(13):2975-2989.
|
[23] |
CAMCI F, CHINNAM R B, ELLIS R D. Robust kernel distance multivariate control chart using support vector principles[J]. International Journal of Production Research, 2008, 46(18):5075-5095.
|
[24] |
NING X H, TSUNG F G. Improved design of kernel distance-based charts using support vector methods[J]. ⅡE Transactions, 2013, 45(4):464-476.
|
[25] |
SUKCHOTRAT T, KIM S B, TSUNG F G. One-class classification-based control charts for multivariate process monitoring[J]. ⅡE transactions, 2009, 42(2):107-120.
|
[26] |
KHEDIRI I B, WEIHS C, LIMAM M. Kernel k-means clustering based local support vector domain description fault detection of multimodal processes[J]. Expert Systems with Applications, 2012, 39(2):2166-2171.
|
[27] |
TAX D M J, DUIN R P W. Support vector domain description[J]. Pattern recognition letters, 1999, 20(11):1191-1199.
|
[28] |
TAX D M J, DUIN R P W. Support vector data description[J]. Machine Learning, 2004, 54(1):45-66.
|
[29] |
SAKLA W, CHAN A, JI J, et al. An SVDD-based algorithm for target detection in hyperspectral imagery[J]. Geoscience and Remote Sensing Letters, IEEE, 2011, 8(2):384-388.
|
[30] |
GE Z Q, GAO F R, SONG Z H. Batch process monitoring based on support vector data description method[J]. Journal of Process Control, 2011, 21(6):949-959.
|
[31] |
YAO M, WANG H G, XU W L. Batch process monitoring based on functional data analysis and support vector data description[J]. Journal of Process Control, 2014, 24(7):1085-1097.
|