CIESC Journal ›› 2018, Vol. 69 ›› Issue (4): 1255-1260.DOI: 10.11949/j.issn.0438-1157.20170836
Previous Articles Next Articles
ZHAO Shuwei1,2, HE Tao2, LI Xuemei2, GAO Congjie3, HO Kyong Shon4, NGHIEM Long D5, ELIMELECH Menachem6
Received:
2017-06-29
Revised:
2017-07-17
Online:
2018-04-05
Published:
2018-04-05
赵书威1,2, 何涛2, 李雪梅2, 高从堦3, Ho Kyong Shon4, Long D Nghiem5, Menachem Elimelech6
通讯作者:
何涛
CLC Number:
ZHAO Shuwei, HE Tao, LI Xuemei, GAO Congjie, HO Kyong Shon, NGHIEM Long D, ELIMELECH Menachem. Highlights of international forward osmosis technology symposium (IFOS2016): is forward osmosis feasible?[J]. CIESC Journal, 2018, 69(4): 1255-1260.
赵书威, 何涛, 李雪梅, 高从堦, Ho Kyong Shon, Long D Nghiem, Menachem Elimelech. 国际正渗透膜技术研讨会IFOS2016回顾:正渗透可行吗?[J]. 化工学报, 2018, 69(4): 1255-1260.
[1] | SIDNEY L, SRINIVASA S. High flow porous membranes for separating water from saline solutions:US3133132[P].1964. |
[2] | HICKENBOTTOM K L, VANNESTE J, ELIMELECH M, et al. Assessing the current state of commercially available membranes and spacers for energy production with pressure retarded osmosis[J]. Desalination, 2016, 389:108-118. |
[3] | LOEB S, NORMAN R S. Osmotic power plants[J]. Science, 1975, 189(4203):654. |
[4] | YIP N Y, ELIMELECH M. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis[J]. Environmental Science & Technology, 2014, 48(18):11002-11012. |
[5] | THORSEN T, HOLT T. The potential for power production from salinity gradients by pressure retarded osmosis[J]. Journal of Membrane Science, 2009, 335(1/2):103-110. |
[6] | MCGINNIS R L, ELIMELECH M. Energy requirements of ammonia-carbon dioxide forward osmosis desalination[J]. Desalination, 2007, 207(1/2/3):370-382. |
[7] | SHAFFER D L, WERBER J R, JARAMILLO H, et al. Forward osmosis:Where are we now?[J]. Desalination, 2015, 356:271-284. |
[8] | CATH T Y, CHILDRESS A E, ELIMELECH M. Forward osmosis:principles, applications, and recent developments[J]. Journal of Membrane Science, 2006, 281(1/2):70-87. |
[9] | CHEN G, WANG Z, LONG D N, et al. Treatment of shale gas drilling flowback fluids (SGDFs) by forward osmosis:membrane fouling and mitigation[J]. Desalination, 2015, 366:113-120. |
[10] | LI X M, ZHAO B, WANG Z, et al. Water reclamation from shale gas drilling flow-back fluid using a novel forward osmosis-vacuum membrane distillation hybrid system[J]. Water Sci. Technol., 2014, 69(5):1036-1044. |
[11] | SHAFFER D L, ARIAS CHAVEZ L H, BEN-SASSON M, et al. Desalination and reuse of high-salinity shale gas produced water:drivers, technologies, and future directions[J]. Environmental Science & Technology, 2013, 47(17):9569-9583. |
[12] | VIDIC R D, BRANTLEY S L, VANDENBOSSCHE J M, et al. Impact of shale gas development on regional water quality[J]. Science, 2013, 340(6134):1235009. |
[13] | LI X, HE T, DOU P, et al. Forward osmosis and forward osmosis membranes[M]//Comprehensive Membrane Science and Engineering. 2nd ed. Oxford:Elsevier, 2017:95-123. |
[14] | YIP N Y, TIRAFERRI A, PHILLIP W A, et al. High performance thin-film composite forward osmosis membrane[J]. Environmental Science & Technology, 2010, 44(10):3812-3818. |
[15] | WERBER J R, DESHMUKH A, ELIMELECH M. The critical need for increased selectivity, not increased water permeability, for desalination membranes[J]. Environmental Science & Technology Letters, 2016, 3(4):112-120. |
[16] | XIAO P, LI J, REN Y W, et al. A comprehensive study of factors affecting fouling behavior in forward osmosis[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2016, 499:163-172. |
[17] | CHEN G, LIU R, SHON H K, et al. Open porous hydrophilic supported thin-film composite forward osmosis membrane via co-casting for treatment of high-salinity wastewater[J]. Desalination, 2017, 405:76-84. |
[18] | SOLOMON M F J, BHOLE Y, LIVINGSTON A G. High flux membranes for organic solvent nanofiltration (OSN)-interfacial polymerization with solvent activation[J]. Journal of Membrane Science, 2012, 423:371-382. |
[19] | SOLOMON M F J, BHOLE Y, LIVINGSTON A G. High flux hydrophobic membranes for organic solvent nanofiltration (OSN)-interfacial polymerization, surface modification and solvent activation[J]. Journal of Membrane Science, 2013, 434(434):193-203. |
[20] | PARK M J, PHUNTSHO S, HE T, et al. Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes[J]. Journal of Membrane Science, 2015, 493:496-507. |
[21] | QIN D, LIU Z, SUN D D, et al. A new nanocomposite forward osmosis membrane custom-designed for treating shale gas wastewater[J]. Scientific Reports, 2015, 5:14530. |
[22] | WIDJOJO N, CHUNG T S, WEBER M, et al. A sulfonated polyphenylenesulfone (sPPSU) as the supporting substrate in thin film composite (TFC) membranes with enhanced performance for forward osmosis (FO)[J]. Chemical Engineering Journal, 2013, 220:15-23. |
[23] | WEI J, LI Y, SETIAWAN L, et al. Influence of macromolecular additive on reinforced flat-sheet thin film composite pressure-retarded osmosis membranes[J]. Journal of Membrane Science, 2016, 511:54-64. |
[24] | WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1(5):16018. |
[25] | GAI J G, GONG X L. Zero internal concentration polarization FO membrane:functionalized graphene[J]. Journal of Materials Chemistry A, 2014, 2(2):425-429. |
[26] | TIRAFERRI A, KANG Y, GIANNELIS E P, et al. Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles[J]. ACS Applied Materials & Interfaces, 2012, 4(9):5044-5053. |
[27] | HEGAB H M, ELMEKAWY A, BARCLAY T G, et al. Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide:performance patterns and biofouling propensity[J]. ACS Applied Materials & Interfaces, 2015, 7(32):18004-18016. |
[28] | PERREAULT F, JARAMILLO H, XIE M, et al. Biofouling mitigation in forward osmosis using graphene oxide functionalized thin-film composite membranes[J]. Environmental Science & Technology, 2016, 50(11):5840-5848. |
[29] | SOROUSH A, MA W, SILVINO Y, et al. Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets[J]. Environmental Science-Nano, 2015, 2(4):395-405. |
[30] | AZARI S, ZOU L. Fouling resistant zwitterionic surface modification of reverse osmosis membranes using amino acid L-cysteine[J]. Desalination, 2013, 324:79-86. |
[31] | LU X, ROMERO-VARGAS C S, SHAFFER D L, et al. In situ surface chemical modification of thin-film composite forward osmosis membranes for enhanced organic fouling resistance[J]. Environmental Science & Technology, 2013, 47(21):12219. |
[32] | SHAFFER D L, JARAMILLO H, LU X, et al. Post-fabrication modification of forward osmosis membranes with a poly(ethylene glycol) block copolymer for improved organic fouling resistance[J]. Journal of Membrane Science, 2015, 490:209-219. |
[33] | LIU C, LEE J, MA J, et al. Antifouling thin-film composite membranes by controlled architecture of zwitterionic polymer brush layer[J]. Environmental Science & Technology, 2017, 51(4):2161. |
[34] | PHUNTSHO S, HONG S, ELIMELECH M, et al. Forward osmosis desalination of brackish groundwater:meeting water quality requirements for fertigation by integrating nanofiltration[J]. Journal of Membrane Science, 2013, 436:1-15. |
[35] | PHUNTSHO S, HONG S, ELIMELECH M, et al. Forward osmosis desalination of brackish groundwater[J]. Journal of Membrane Science, 2013, 436(4):1-15. |
[36] | KIM J E, PHUNTSHO S, SHON H K. Pilot-scale nanofiltration system as post-treatment for fertilizer-drawn forward osmosis desalination for direct fertigation[J]. Desalination & Water Treatment, 2013, 51(31/32/33):6265-6273. |
[37] | PHUNTSHO S, SHON H K, MAJEED T, et al. Blended fertilizers as draw solutions for fertilizer-drawn forward osmosis desalination[J]. Environmental Science & Technology, 2012, 46(8):4567. |
[38] | KIM Y, CHEKLI L, SHIM W G, et al. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system[J]. Bioresource Technology, 2016, 210:26-34. |
[39] | PHUNTSHO S, KIM J E, JOHIR M A H, et al. Fertiliser drawn forward osmosis process:pilot-scale desalination of mine impaired water for fertigation[J]. Journal of Membrane Science, 2016, 508:22-31. |
[40] | PHUNTSHO S, SHON H K, HONG S, et al. Fertiliser drawn forward osmosis desalination:the concept, performance and limitations for fertigation[J]. Reviews in Environmental Science & Bio/technology, 2012, 11(2):147-168. |
[41] | MCCUTCHEON J R, ELIMELECH M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis[J]. Journal of Membrane Science, 2006, 284(1/2):237-247. |
[42] | MCGINNIS R L, HANCOCK N T, NOWOSIELSKI-SLEPOWRON M S, et al. Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines[J]. Desalination, 2013, 312:67-74. |
[43] | LI X M, XU G, LIU Y, et al. Magnetic Fe3O4 nanoparticles:synthesis and application in water treatment[J]. Nanoscience & Nanotechnology-Asia, 2011, 1:14-24. |
[44] | LING M M, CHUNG T S, LU X. Facile synthesis of thermosensitive magnetic nanoparticles as "smart" draw solutes in forward osmosis[J]. Chemical Communications, 2011, 47(38):10788-10790. |
[45] | ZHOU A J, LUO H Y, WANG Q, et al. Magnetic thermoresponsive ionic nanogels as novel draw agents in forward osmosis[J]. RSC Advances, 2015, 5(20):15359-15365. |
[46] | DEY P, IZAKE E L. Magnetic nanoparticles boosting the osmotic efficiency of a polymeric FO draw agent:effect of polymer conformation[J]. Desalination, 2015, 373:79-85. |
[47] | YANG H M, SEO B K, LEE K W, et al. Hyperbranched polyglycerol-coated magnetic nanoparticles as draw solute in forward osmosis[J]. Asian Journal of Chemistry, 2014, 26(13):4031-4034. |
[48] | LI D, ZHANG X, SIMON G P, et al. Forward osmosis desalination using polymer hydrogels as a draw agent:influence of draw agent, feed solution and membrane on process performance[J]. Water Research, 2013, 47(1):209-215. |
[49] | RAZMJOU A, SIMON G P, WANG H. Effect of particle size on the performance of forward osmosis desalination by stimuli-responsive polymer hydrogels as a draw agent[J]. Chemical Engineering Journal, 2013, 215/216:913-920. |
[50] | GE Q, SU J, AMY G L, et al. Exploration of polyelectrolytes as draw solutes in forward osmosis processes[J]. Water Research, 2012, 46(4):1318-1326. |
[51] | OU R W, WANG Y Q, WANG H T, et al. Thermo-sensitive polyelectrolytes as draw solutions in forward osmosis process[J]. Desalination, 2013, 318:48-55. |
[52] | TIAN E L, HU C B, QIN Y, et al. A study of poly (sodium 4-styrenesulfonate) as draw solute in forward osmosis[J]. Desalination, 2015, 360:130-137. |
[53] | QI S R, LI Y, WANG R, et al. Towards improved separation performance using porous FO membranes:the critical roles of membrane separation properties and draw solution[J]. Journal of Membrane Science, 2016, 498:67-74. |
[54] | NGUYEN H T, NGUYEN N C, CHEN S S, et al. Innovation in draw solute for practical zero salt reverse in forward osmosis desalination[J]. Industrial & Engineering Chemistry Research, 2015, 54(23):6067-6074. |
[55] | ZHAO D L, WANG P, ZHAO Q P, et al. Thermoresponsive copolymer-based draw solution for seawater desalination in a combined process of forward osmosis and membrane distillation[J]. Desalination, 2014, 348:26-32. |
[56] | STONE M L, RAE C, STEWART F F, et al. Switchable polarity solvents as draw solutes for forward osmosis[J]. Desalination, 2013, 312:124-129. |
[57] | MELCHELS F P, FEHR I, REITZ A S, et al. Initial design and physical characterization of a polymeric device for osmosis-driven delayed burst delivery of vaccines[J]. Biotechnology and Bioengineering, 2015, 112(9):1927-1935. |
[58] | CHEN G, WANG Z, LI X M, et al. Concentrating underground brine by FO process:influence of membrane types and spacer on membrane scaling[J]. Chemical Engineering Journal, 2016, 285:92-100. |
[59] | WANG W D, ZHANG Y T, ESPARRA-ALVARADO M, et al. Effects of pH and temperature on forward osmosis membrane flux using rainwater as the makeup for cooling water dilution[J]. Desalination, 2014, 351:70-76. |
[60] | ZHAO S, ZOU L. Effects of working temperature on separation performance, membrane scaling and cleaning in forward osmosis desalination[J]. Desalination, 2011, 278(1):157-164. |
[61] | BOO C, ELIMELECH M, HONG S. Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation[J]. Journal of Membrane Science, 2013, 444:148-156. |
[62] | YANGALI-QUINTANILLA V, LI Z, VALLADARES R, et al. Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse[J]. Desalination, 2011, 280:160-166. |
[63] | BERKELAAR R P, DIETRICH E, KIP G A M, et al. Exposing nanobubble-like objects to a degassed environment[J]. Soft Matter, 2014, 10(27):4947-4955. |
[64] | CATH T Y. Osmotically and thermally driven membrane processes for enhancement of water recovery in desalination processes[J]. Desalination and Water Treatment 2010, 15: 279-286. |
[65] | WANG X H, CHANG V W C, TANG C Y. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation:advances, challenges, and prospects for the future[J]. Journal of Membrane Science, 2016, 504:113-132. |
[66] | HEY T, ZAREBSKA A, BAJRAKTARI N, et al. Influences of mechanical pretreatment on the non-biological treatment of municipal wastewater by forward osmosis[J]. Environ. Technol., 2017, 38(18):2295-2304. |
[67] | CHRISTOVA-BOAL D, EDEN R E, MCFARLANE S. An investigation into greywater reuse for urban residential properties[J]. Desalination, 1996, 106(1):391-397. |
[68] | LUO W, HAI F I, PRICE W E, et al. Evaluating ionic organic draw solutes in osmotic membrane bioreactors for water reuse[J]. Journal of Membrane Science, 2016, 514:636-645. |
[69] | LUO W, PHAN H V, XIE M, et al. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse:Biological stability, membrane fouling, and contaminant removal[J]. Water Research, 2017, 109:122-134. |
[70] | ANSARI A J, HAI F I, PRICE W E, et al. Phosphorus recovery from digested sludge centrate using seawater-driven forward osmosis[J]. Separation and Purification Technology, 2016, 163:1-7. |
[71] | ANSARI A J, HAI F I, PRICE W E, et al. Forward osmosis as a platform for resource recovery from municipal wastewater-a critical assessment of the literature[J]. Journal of Membrane Science, 2017, 529:195-206. |
[72] | DESJARDINS J. All U.S. energy consumption in a giant diagram[EB/OL].[2017-08-28]. http://www.visualcapitalist.com/u-s-energy-consumption-one-giant-diagram/. |
[73] | STRAUB A P, DESHMUKH A, ELIMELECH M. Pressure-retarded osmosis for power generation from salinity gradients:is it viable?[J]. Energy & Environmental Science, 2016, 9(1):31-48. |
[74] | LOGAN B E, ELIMELECH M. Membrane-based processes for sustainable power generation using water[J]. Nature, 2012, 488(7411):313-319. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[3] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[4] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[5] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[6] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[7] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[8] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[9] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[10] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[11] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[12] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[13] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[14] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[15] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 401
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 504
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||