CIESC Journal ›› 2018, Vol. 69 ›› Issue (4): 1595-1601.DOI: 10.11949/j.issn.0438-1157.20170864
Previous Articles Next Articles
LIU Yuzhi, WANG Chen, GAO Yu, SUI Zhenying, ZOU Donglei
Received:
2017-07-06
Revised:
2017-08-04
Online:
2018-04-05
Published:
2018-04-05
Supported by:
supported by Key Project of Science and Technology Department of Jilin Province (20140204038SF).
刘雨知, 王晨, 高玉, 隋振英, 邹东雷
通讯作者:
邹东雷
基金资助:
吉林省科技厅重点攻关项目(20140204038SF)。
CLC Number:
LIU Yuzhi, WANG Chen, GAO Yu, SUI Zhenying, ZOU Donglei. Effects of surface properties of activated carbon on its adsorption and oxidation of hydroquinone[J]. CIESC Journal, 2018, 69(4): 1595-1601.
刘雨知, 王晨, 高玉, 隋振英, 邹东雷. 活性炭表面性质对其吸附及氧化氢醌的影响[J]. 化工学报, 2018, 69(4): 1595-1601.
[1] | ETESAMI M, KAROONIAN F S, MOHAMED N. Electrooxidation of hydroquinone on simply prepared Au-Pt bimetallic nanoparticles[J]. Science China Chemistry, 2013, 56(6):746-754. |
[2] | KALLEL M, BELAID C, MECHICHI T, et al. Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron[J]. Chemical Engineering Journal, 2009, 150(2/3):391-395. |
[3] | ASTUDILLO P D, VALENCIA D P, GONZ LEZ-FUENTES M A, et al. Electrochemical and chemical formation of a low-barrier proton transfer complex between the quinone dianion and hydroquinone[J]. Electrochimica Acta, 2012, 81(22):197-204. |
[4] | STEFANO J S, ROCHA D P, DORNELLAS R M, et al. Highly sensitive amperometric detection of drugs and antioxidants on non-functionalized multi-walled carbon nanotubes:effect of metallic impurities[J]. Electrochimica Acta, 2017, 240:80-89. |
[5] | LUO H, LIANG H, CHEN J, et al. Hydroquinone induces TK6 cell growth arrest and apoptosis through PARP-1/p53 regulatory pathway[J]. Environmental Toxicology, 2017, 32(9):2163-2171. |
[6] | MAZLOUM-ARDAKANI M, YAVARI M, KHOSHROO A. Different electrocatalytic response related to the morphological structure of TiO2 nanomaterial:hydroquinone as an analytical probe[J]. Electroanalysis, 2017, 29(1):231-237. |
[7] | GOODWIN P M, ANTHONY C. The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes[J]. Advances in Microbial Physiology, 1998, 40(1):1-80. |
[8] | MA W, LONG Y T. Quinone/hydroquinone-functionalized biointerfaces for biological applications from the macro-to nano-scale[J]. Chemical Society Reviews, 2014, 43(1):30-41. |
[9] | ROLDA?N S, GRANDA M, MENE?NDEZ R, et al. Mechanisms of energy storage in carbon-based supercapacitors modified with a quinoid redox-active electrolyte[J]. The Journal of Physical Chemistry C, 2011, 115(35):17606-17611. |
[10] | SALAS M, GÓMEZ M N, GONZÁLEZ F J, et al. Electrochemical reduction of 1, 4-benzoquinone. Interaction with alkylated thymine and adenine nucleobases[J]. Journal of Electroanalytical Chemistry, 2003, 543(1):73-81. |
[11] | TANG P, DENG C, TANG X, et al. Degradation of p-nitrophenol by interior microelectrolysis of zero-valent iron/copper-coated magnetic carbon galvanic couples in the intermittent magnetic field[J]. Chemical Engineering Journal, 2012, 210(4):203-211. |
[12] | LUO J, SONG G, LIU J, et al. Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface[J]. Journal of Colloid & Interface Science, 2014, 435:21-25. |
[13] | TSENG H H, SU J G, LIANG C. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene[J]. Journal of Hazardous Materials, 2011, 192(2):500-506. |
[14] | LV X, XU J, JIANG G, et al. Removal of chromium(Ⅵ) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes[J]. Chemosphere, 2011, 85(7):1204-1209. |
[15] | WU L, LIAO L, LV G, et al. Micro-electrolysis of Cr(Ⅵ) in the nanoscale zero-valent iron loaded activated carbon[J]. Journal of Hazardous Materials, 2013, 254/255C(12):277-283. |
[16] | LAI B, ZHOU Y, YANG P, et al. Degradation of 3, 3'-iminobis-propanenitrile in aqueous solution by Fe0/GAC micro-electrolysis system[J]. Chemosphere, 2013, 90(4):1470-1477. |
[17] | FU F, HAN W, HUANG C, et al. Removal of Cr(Ⅵ) from wastewater by supported nanoscale zero-valent iron on granular activated carbon[J]. Desalination & Water Treatment, 2013, 51(13/14/15):2680-2686. |
[18] | LENG L, YUAN X, ZENG G, et al. Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye(Malachite green) adsorption[J]. Fuel, 2015, 155:77-85. |
[19] | ZHANG W X. Nanoscale iron particles for environmental remediation:an overview[J]. Journal of Nanoparticle Research, 2003, 5(3):323-332. |
[20] | HOSSEINI S M, ATAIE-ASHTIANI B, KHOLGHI M. Nitrate reduction by nano-Fe/Cu particles in packed column[J]. Desalination, 2011, 276(1/2/3):214-221. |
[21] | NIGROVSKI B, ZAVYALOVA U, SCHOLZ P, et al. Microwave-assisted catalytic oxidative dehydrogenation of ethylbenzene on iron oxide loaded carbon nanotubes[J]. Carbon, 2008, 46(13):1678-1686. |
[22] | 曲健林, 韩敏, 张秀丽, 等. 棉杆活性炭负载Co-B催化剂催化硼氢化钠水解制氢的性能[J]. 化工学报, 2015, 66(1):105-113. QU J L, HAN M, ZHANG X L, et al. Hydrogen generation by sodium borohydride hydrolysis on Co-B catalysts supported on cotton stalk-based activated carbon[J]. CIESC Journal, 2015, 66(1):105-113. |
[23] | 蒋剑春. 活性炭应用理论与技术[M]. 北京:化学工业出版社, 2010. JIANG J C. Application Theory and Technology of Activated Carbon[M]. Beijing:Chemical Industry Press, 2010. |
[24] | XIA G, SHEN S, ZHU F, et al. Effect of oxygen-containing functional groups of carbon materials on the performance of Li-O2 batteries[J]. Electrochemistry Communications, 2015, 60:26-29. |
[25] | 周王帆, 陈新, 曹红亮, 等. 法国梧桐枯叶基活性炭的制备及其在超级电容器中的应用[J]. 化工学报, 2017, 68(7):2918-2924. ZHOU W F, CHEN X, CAO H L, et al. Preparation of platanus leaf-based activated carbon and its application to supercapacitors[J]. CIESC Journal, 2017, 68(7):2918-2924. |
[26] | LAHAYEA J. The chemistry of carbon surfaces[J]. Fuel, 1998, 77(6):543-547. |
[27] | ARENILLAS A, SMITH K M, DRAGE T C, et al. CO2 capture using some fly ash-derived carbon materials[J]. Fuel, 2005, 84(17):2204-2210. |
[28] | CUI H, TURN S Q, REESE M A. Removal of sulfur compounds from utility pipelined synthetic natural gas using modified activated carbons[J]. Catalysis Today, 2009, 139(4):274-279. |
[29] | DAUD W M A W, HOUSHAMND A H. Textural characteristics, surface chemistry and oxidation of activated carbon[J]. Journal of Natural Gas Chemistry, 2010, 19(3):267-279. |
[30] | FIGUEIREDO J L, PEREIRA M F R. The role of surface chemistry in catalysis with carbons[J]. Catalysis Today, 2010, 150(1/2):2-7. |
[31] | FIGUEIREDO J L, PEREIRA M F R, FREITAS M M A, et al. Modification of the surface chemistry of activated carbons[J]. Carbon, 1999, 37(9):1379-1389. |
[32] | 范延臻, 王宝贞, 王琳, 等. 改性活性炭对有机物的吸附性能[J]. 环境化学, 2001, 20(5):444-448. FAN Y Z, WANG B Z, WANG L, et al. Adsorption of organic micropollutants on modifiedactivated carbons[J]. Environmental Chemistry, 2001, 20(5):444-448. |
[33] | 尤翔宇, 杨杰, 王云燕, 等. 苯酚在活性炭上的吸附模型[J]. 中国有色金属学报, 2012, 22(10):2924-2929. YOU X Y, YANG J, WANG Y Y, et al. Adsorption model of phenol on activated carbon[J]. Chinese Journal of Nonferrous Metals, 2012, 22(10):2924-2929. |
[34] | HAYDAR S, FERRO-GARCÍA M A, RIVERA-UTRILLA J, et al. Adsorption of p-nitrophenol on an activated carbon with different oxidations[J]. Carbon, 2003, 41:387-395. |
[35] | JIAN M. Determination of phenol aniline and hydroquinone by UV[J]. Environmental Science & Technology, 2011, 34(6G):249-251. |
[36] | 刘少俊, 高翔, 曹飞飞. 化学性质对活性炭脱硫的影响[J]. 煤炭学报, 2013, 38(7):1242-1247. LIU S J, GAO X, CAO F F. Effect of chemical properties on SO2 removal by activated carbons[J]. Journal of China Coal Society, 2013, 38(7):1242-1247. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 709
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 350
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||