[1] |
BELHI M, DOMINGO P, VERVISCH P. Direct numerical simulation of the effect of an electric field on flame stability[J]. Combustion and Flame, 2010, 157(12):2286-2297.
|
[2] |
SÁNCHEZ-SANZ M, MURPHY D C, FERNANDEZ-PEL-LO C. Effect of an external electric field on the propagation velocity of premixed flames[J]. Proceedings of the Combustion Institute, 2015, 35(3):3463-3470.
|
[3] |
HAYHURST A N, GOODINGS J M, TAYLOR S G. The effects of applying electric fields on the mass spectrometric sampling of positive and negative ions from a flame at atmospheric pressure[J]. Combustion and Flame, 2014, 161(12):3249-3262.
|
[4] |
KUHL J, JOVICIC G, ZIGAN L, et al. Transient electric field response of laminar premixed flames[J]. Proceedings of the Combustion Institute, 2013, 34(2):3303-3310.
|
[5] |
MARCUM S D, GANGULY B N. Electric-field-induced flame speed modification[J]. Combustion and Flame, 2005, 143(1):27-36.
|
[6] |
OMBRELLO T, WON S H, JU Y, et al. Flame propagation enhancement by plasma excitation of oxygen(Ⅰ):Effects of O3[J]. Combustion and Flame, 2010, 157(10):1906-1915.
|
[7] |
VEGA E V, LEE K Y. An experimental study on laminar CH4/O2/N2 premixed flames under an electric field[J]. Journal of Mechanical Science and Technology, 2008, 22(2):312-319.
|
[8] |
VEGA E V, SHIN S S, LEE K Y. NO emission of oxygen-enriched CH4/O2/N2 premixed flames under electric field[J]. Fuel, 2007, 86(4):512-519.
|
[9] |
KIM M K, CHUNG S H, KIM H H. Effect of electric fields on the stabilization of premixed laminar Bunsen flames at low AC frequency:bi-ionic wind effect[J]. Combust Flame, 2012, 159(3):1151-1159.
|
[10] |
KIM M K, CHUNG S H, KIM H H. Effect of AC electric fields on the stabilization of premixed bunsen flames[J]. Proceedings of the Combustion Institute, 2011, 33(1):1137-1144.
|
[11] |
WON S H, CHA M S, PARK C S, et al. Effect of electric fields on reattachment and propagation speed of tribrachial flame in laminar coflow jets[J]. Proceedings of the Combustion Institute, 2007, 31(1):963-970.
|
[12] |
SAKHRIEH A, LINS G, DINKELACKER F, et al. The influence of pressure on the control of premixed turbulent flames using an electric field[J]. Combustion and Flame, 2005, 143(3):313-322.
|
[13] |
WON S H, RYU S K, KIM M K, et al. Effect of electric fields on the propagation speed of tribrachial flames in coflow jets[J]. Combustion and Flame, 2008, 152(4):496-506.
|
[14] |
VAN D B J, KONNOV A A, VERHASSELT A, et al. The effect of a DC electric field on the laminar burning velocity of premixed methane/air flames[J]. Proceedings of the Combustion Institute, 2009, 32(1):1237-1244.
|
[15] |
DUAN H, WU X M, ZHANG C, et al. Experimental study of lean premixed CH4/N2/O2 flames under high-frequency alternating-current electric fields[J]. Fuel, 2015, 181(11):1011-1019.
|
[16] |
HUANG Z H, ZHANG Y, ZENG K, et al. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures[J]. Combustion and Flame, 2006, 146(1):302-311.
|
[17] |
崔雨辰, 段浩, 李超, 等. 电场分布对球形传播火焰变形率的影响[J]. 西安交通大学学报, 2015, 49(5):49-55. CUI Y C, DUAN H, LI C, et al. Effects of electric field distribution on deformation rates of spherical propagation flame[J]. Journal of Xi'an Jiaotong University, 2015, 49(5):49-55.
|
[18] |
侯俊才, 魏旭星, 段浩, 等. 交流电场对高压下甲烷/空气预混稀燃火焰的影响[J]. 西安交通大学学报, 2017, 51(1):31-37. HOU J C, WEI X X, DUAN H, et al. Effects of alternating electric fields on CH4/O2 lean combustion flame under high pressure[J]. Journal of Xi'an Jiaotong University, 2017, 51(1):31-37.
|
[19] |
TURNS S R. An Introduction to Combustion Concepts and Applications[M]. 2nd ed. Beijing:Tsinghua University Press, 2009:224-224.
|
[20] |
CHA M S, LEE Y. Premixed combustion under electric field in a constant volume chamber[J]. IEEE Transactions on Plasma Science, 2012, 40(12):3131-3138.
|
[21] |
GOODINGS J, BOHME D, NG C W. Detailed ion chemistry in methane-oxygen flames(Ⅰ):Positive ions[J]. Combustion and Flame, 1979, 36:27-43.
|
[22] |
GOODINGS J, BOHME D, NG C W. Detailed ion chemistry in methane-oxygen flames(Ⅱ):Negative ions[J]. Combustion and Flame, 1979, 36(1):45-62.
|
[23] |
JONES H R N, HAYHURST A N. Measurements of the concentrations of positive and negative ions along premixed fuel-rich flames of methane and oxygen[J]. Combustion and Flame, 2016, 166:86-97.
|
[24] |
ALQUAITY A B S, HAN J, CHAHINE M, et al. Measurements of positively charged ions in premixed methane-oxygen atmospheric flames[J]. Combustion Science and Technology, 2017, 189(4):575-594.
|
[25] |
PRAGER J, RIEDEL U, WARNATZ J. Modeling ion chemistry and charged species diffusion in lean methane-oxygen flames[J]. Proceedings of the Combustion Institute, 2007, 31(1):1129-1137.
|
[26] |
KIM D, RIZZI F, CHENG K W, et al. Uncertainty quantification of ion chemistry in lean and stoichiometric homogenous mixtures of methane, oxygen, and argon[J]. Combustion and Flame, 2015, 162(7):2904-2915.
|
[27] |
ALTENDORFNER F, KUHL J, ZIGAN L, et al. Study of the influence of electric fields on flames using planar LIF and PIV techniques[J]. Proceedings of the Combustion Institute, 2011, 33(2):3195-3201.
|
[28] |
LAWTON J, WEINBERG F J. Maximum ion currents from flames and the maximum practical effects of applied electric fields[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1964, 277(1371):468-497.
|
[29] |
KUHL J, SEEGER T, ZIGAN L, et al. On the effect of ionic wind on structure and temperature of laminar premixed flames influenced by electric fields[J]. Combustion and Flame, 2017, 176:391-399.
|
[30] |
HU J, RIVIN B, SHER E. The effect of an electric field on the shape of co-flowing and candle-type methane-air flames[J]. Experimental Thermal and Fluid Science, 2000, 21(1):124-133.
|
[31] |
KUHL J, JOVICIC G, ZIGAN L, et al. Fundamental investigation of the influence mechanism of an electric field on flames by simultaneous PIV and PLIF measurements[C]//Proceedings of the European Combustion Meeting (ECM). 2011.
|