CIESC Journal ›› 2018, Vol. 69 ›› Issue (1): 507-514.DOI: 10.11949/j.issn.0438-1157.20171023
Previous Articles Next Articles
LOU Hongming, LIN Meilu, QIU Kexian, CAI Cheng, PANG Yuxia, YANG Dongjie, QIU Xueqing
Received:
2017-07-31
Revised:
2017-08-25
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171023
Supported by:
supported by the National Natural Science Foundation of China (21676109, 21376100), Science and Technology Program of Guangzhou, China (201707020025), Special Support Plan for Cultivating High-level Talents of Guangdong, China (2016TX03Z298) and International Cooperation Program of Guangdong, China (2013B051000011).
楼宏铭, 林美露, 邱珂贤, 蔡诚, 庞煜霞, 杨东杰, 邱学青
通讯作者:
邱学青
基金资助:
国家自然科学基金项目(21676109,21376100);广州市科技计划项目(201707020025);广东省特支计划(2016TX03Z298);广东省国际合作项目(2013B051000011)。
CLC Number:
LOU Hongming, LIN Meilu, QIU Kexian, CAI Cheng, PANG Yuxia, YANG Dongjie, QIU Xueqing. Alkaline sulfite pretreatment of corncob residue and its reaction kinetic model[J]. CIESC Journal, 2018, 69(1): 507-514.
楼宏铭, 林美露, 邱珂贤, 蔡诚, 庞煜霞, 杨东杰, 邱学青. 玉米芯残渣的碱性亚硫酸盐预处理及其反应动力学模型[J]. 化工学报, 2018, 69(1): 507-514.
[1] | SOMERVILLE C, YOUNGS H, TAYLOR C, et al. Feedstocks for lignocellulosic biofuels[J]. Science, 2010, 329:790-792. |
[2] | LI H, DENG A, REN J, et al. Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst[J]. Bioresource Technology, 2014, 158:313-320. |
[3] | OH S J, JUNG S H, KIM J S. Co-production of furfural and acetic acid from corncob using ZnCl2 through fast pyrolysis in a fluidized bed reactor[J]. Bioresource Technology, 2013, 144:172-178. |
[4] | ZHANG L, YU H, WANG P, et al. Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3·6H2O as catalyst[J]. Bioresource Technology, 2014, 151:355-360. |
[5] | TANG Y, ZHAO D, CRISTHIAN C, et al. Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media[J]. Biotechnology for Biofuels, 2011, 4(1):1. |
[6] | XING Y, BU L, SUN D, et al. High glucose recovery from direct enzymatic hydrolysis of bisulfite-pretreatment on non-detoxified furfural residues[J]. Bioresource Technology, 2015, 193:401-407. |
[7] | YU H, XING Y, LEI F, et al. Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and ethanol organosolv[J]. Bioresource Technology, 2014, 167:46-52. |
[8] | BU L, XING Y, YU H, et al. Comparative study of sulfite pretreatments for robust enzymatic saccharification of corn cob residue[J]. Biotechnol Biofuels, 2012, 5(12):87-91. |
[9] | WANG G S, PAN X J, ZHU J Y, et al. Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods[J]. Biotechnology Progress, 2009, 25(4):1086-1093. |
[10] | ZHU J Y, PAN X J, WANG G S, et al. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine[J]. Bioresource Technology, 2009, 100:2411-2418. |
[11] | ZHU J Y, ZHU W Y, OBRYAN P, et al. Ethanol production from SPORL-pretreated lodgepole pine:preliminary evaluation of mass balance and process energy efficiency[J]. Appl. Microbiol. Biotechnol., 201086:1355-1365. |
[12] | ZHANG D S, YANG Q, ZHU J Y, et al. Sulfite (SPORL) pretreatment of switchgrass for enzymatic saccharification[J]. Bioresource Technology, 2013, 129:127-134. |
[13] | 刘青, 楼宏铭, 杨东杰, 等. 接枝磺化木质素高效减水剂的配伍性能研究[J]. 精细化工, 2008, 25(10):1016-1020. LIU Q, LOU H M, YANG D J, et al. Research on compatibility of graft-sulfonated lignin as superplasticizers[J]. Fine Chemicals, 2008, 25(10):1016-1020. |
[14] | WINOWISKI T, BRZEZINSKI J, LEBO S. Improved efficacy of lignosulfonate dispersants through a novel combination[C]//DOWNER R A, MUENINGHOFF J C, VOLGAS G C. Pesticide Formulations and Delivery Systems:Meeting the Challenges of the Current Crop Protection Industry. ASTM International, 2003. |
[15] | QIN Y L, YANG D J, QIU X Q. Hydroxypropyl sulfonated lignin as dye dispersant:effect of average molecular weight[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12):3239-3244. |
[16] | WU Y X, ZHOU J H, YE C C, et al. Optimized synthesis of lignosulphonate-gpoly (acrylic acid-co-acrylamide) superabsorbent hydrogel based on the Taguchi method[J]. Iran. Polym. J., 2010, 19(7):511-520. |
[17] | SLUITER A, HAMES B, RUIZ R, et al. Determination of structural carbohydrates and lignin in biomass. LAP-002 NREL Analytical Procedure[R]. National Renewable Energy Laboratory Golden, Co, 2008. |
[18] | 庞煜霞, 杨东杰, 邱学青, 等. 木质素磺酸盐磺化度测定方法的改进[J]. 中华纸业, 2006, 27(11):38-40. PANG Y X, YANG D J, QIU X Q, et al. An improvement on the measuring method of the sulphonation degree of lignosulfonate[J]. Paper Industry, 2006, 27(11):38-40. |
[19] | LIU L, SUN J, CAI C, et al. Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation[J]. Bioresource Technology, 2009, 100(23):5865-5871. |
[20] | 刘志平. 麦草碱木素的高温磺化改进及木素在纤维表面的沉积机理探索[D]. 广州:华南理工大学, 2012. LIU Z P. Improvement of high temperature sulfonation of wheat straw alkali lignin and its precipitation mechanism on fiber surface[D]. Guangzhou:South China University of Technology, 2012. |
[21] | LINDGREN C, LINDSTRÖM M E. The kinetics of residual delignification and factors affecting the amount of residual lignin during kraft pulping[J]. Journal of Pulp and Paper Science (JPPS), 1996, 22(8):290-295. |
[22] | SANTOS A, RODRÍGUEZ F, GILARRANZ M A, et al. Kinetic modeling of kraft delignification of Eucalyptus globulus[J]. Industrial & Engineering Chemistry Research, 1997, 36(10):4114-4125. |
[23] | DOLK M, YAN J F, MCCARTHY J L. Lignin 25. Kinetics of delignification of western Hemlock in flow-through reactors under alkaline conditions[J]. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 1989, 43(2):91-98. |
[24] | KIM S, HOLTZAPPLE M T. Delignification kinetics of corn stover in lime pretreatment[J]. Bioresource Technology, 2006, 97(5):778-785. |
[25] | 詹怀宇. 制浆原理与工程[M]. 3版. 北京:中国轻工业出版社, 2014:26-106. ZHAN H Y. Pulping Principle and Engineering[M]. 3rd ed. Beijing:China Light Industry Press, 2014:26-106. |
[26] | 宋丽丽. 白腐菌高效改性木质素促进秸秆酶解反应机制研究[D]. 武汉:华中科技大学, 2013. SONG L L. Mechanism study on improvement of enzymatic hydrolysis of corn stover by efficient lignin modification with white-rot fungus[D]. Wuhan:Huazhong University of Science and Technology, 2013. |
[27] | PAN X. Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose[J]. Journal of Biobased Materials and Bioenergy, 2008, 2:25-32. |
[28] | 崔美, 黄仁亮, 苏荣欣, 等. 木质纤维素新型预处理与顽抗特性[J]. 化工学报, 2012, 63(3):677-687. CUI M, HUANG R L, SU R X, et al. Au overview on lignocellulose pretreatment and recalcitrant characteristics[J]. CIESC Journal, 2012, 63(3):677-687. |
[29] | LOU H, ZHU J Y, LAN T Q, et al. pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses[J]. ChemSusChem, 2013, 6:919-927. |
[30] | LOU H, WANG M, LAI H, et al. Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate[J]. Bioresource Technology, 2013, 146:478-484. |
[31] | WANG Z, ZHU J Y, FU Y, et al. Lignosulfonate-mediated cellulase adsorption:enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin[J]. Biotechnology for Biofuels, 2013, 6:156. |
[32] | ZHANG C, HOUTMAN C J, ZHU J Y. Using low temperature to balance enzymatic saccharification and furan formation during SPORL pretreatment of Douglas-fir[J]. Process Biochemistry, 2014, 49:466-473. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[3] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[4] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[5] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[6] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[7] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[10] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[11] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[12] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[13] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[14] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[15] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 658
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 580
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||