[1] |
XIONG Q, CAI W J, HE M J, et al. Decentralized control system design for multivariable processes-a novel method based on effective relative gain array[J]. Industrial & Engineering Chemistry Research, 2006, 45(8):2769-2776.
|
[2] |
XIONG Q, CAI W J. Effective transfer function method for decentralized control system design of multi-input multi-output processes[J]. Journal of Process Control, 2006, 16(8):773-784.
|
[3] |
罗雄麟, 王海群, 许锋. 工业过程多变量系统的辅助常规控制设计[J]. 化工自动化及仪表, 2009, 36(4):33-37. LUO X L, WANG H Q, XU F. Auxiliary regulatory control design of multivariable system in industrial process[J]. Control and Instruments in Chemical Industry, 2009, 36(4):33-37.
|
[4] |
ROSENBROCK H H. Design of multivariable control systems using the inverse Nyquist array[J]. Proceedings of the Institution of Electrical Engineers, 1969, 116(11):1929-1936.
|
[5] |
HO W K, LEE T H, XU W. The direct nyquist array design of PID controllers[J]. IEEE Transactions on Industrial Electronics, 2000, 47(1):175-185.
|
[6] |
CHEN D, SEBORG D E. Multiloop PI/PID controller design based on Gershgorin bands[J]. IEE Proc.-Control Theory Appl., 2002, 149(1):68-73.
|
[7] |
ROSENBROCK H H. Computer-Aided Control System Design[M]. New York:Academic Press, 1974.
|
[8] |
LIMEBEER D J N. The application of generalized diagonal dominance to linear system stability theory[J]. International Journal of Control, 1982, 36(2):185-212.
|
[9] |
HAWKINS D J. Pseudodiagonalisation and the inverse-Nyquist array method[J]. Proceedings of the Institution of Electrical Engineers, 1972, 119(3):337-342.
|
[10] |
江青茵. 对角优势的常数阵实现[J]. 控制理论与应用, 1988, 5(1):89-94. JIANG Q Y. Achieving diagonal dominance via constant compensation[J]. Control Theory and Applications, 1988, 5(1):89-94.
|
[11] |
FORD M P, DALY K C. Dominance improvement by pseudodecoupling[J]. Proceedings of the Institution of Electrical Engineers, 1980, 126(12):1316-1320.
|
[12] |
WANG Q G, HUANG B, GUO X. Auto-tuning of TITO decoupling controllers from step tests[J]. ISA Transactions, 2000, 39(4):407-418.
|
[13] |
NOBAKHTI A, MUNRO N. Achieving diagonal dominance by frequency interpolation[C]//American Control Conference. Boston:IEEE Xplore, 2004:3065-3069.
|
[14] |
SHEN Y, CAI W J, LI S. Multivariable process control:decentralized, decoupling, or sparse?[J]. Industrial & Engineering Chemistry Research, 2010, 49(2):761-771.
|
[15] |
李康伟, 王宏力. 多变量线性系统解耦控制算法研究[J]. 计算机测量与控制, 2007, 15(3):346-348. LI K W, WANG H L. Research on decoupling control algorithm of multi-variable linear systems[J]. Computer Measurement and Control, 2007, 15 (3):346-348.
|
[16] |
ÅSTRÖM K J, JOHANSSON K H, WANG Q G. Design of decoupled PI controller for two-by-two systems[J]. IEE Proceedings-Control Theory and Applications, 2002, 149(1):74-81.
|
[17] |
CAI W J, NI W, HE M J, et al. Normalized decoupling-a new approach for MIMO process control system design[J]. Ind. Eng. Chem. Res., 2008, 47(19):7347-7356.
|
[18] |
SHEN Y, CAI W J, LI S. Normalized decoupling control for high-dimensional MIMO processes for application in room temperature control HVAC systems[J]. Control Engineering Practice, 2010, 18(6):652-664.
|
[19] |
庞国仲, 鲍远律. "自加权"准优势化方法[J]. 控制与决策, 1989, (2):1-7. PANG G Z, BAO Y L. The self weighting pseudo-domination algorithm[J]. Control and Decision, 1989, (2):1-7.
|
[20] |
LUYBEN W L. Simple method for tuning SISO controllers in multivariable systems[J]. Industrial & Engineering Chemistry Process Design & Development, 1986, 25(3):654-660.
|
[21] |
HO W K, LEE T H, GAN O P. Tuning of multiloop proportional-integral-derivative controllers based on gain and phase margin specifications[J]. Industrial & Engineering Chemistry Research, 1997, 36(6):2231-2238.
|
[22] |
CHEN D, SEBORG D E. Design of decentralized PI control systems based on Nyquist stability analysis[J]. Journal of Process Control, 2003, 13(1):27-39.
|
[23] |
HUANG H P, JENG J C, CHIANG C H, et al. A direct method for multi-loop PI/PID controller design[J]. Journal of Process Control, 2003, 13(8):769-786.
|
[24] |
CHIEN I L, HUANG H P, YANG J C. A simple multiloop tuning method for PID controllers with no proportional kick[J]. Ind.Eng.Chem.Res., 1999, 38(4):1456-1468.
|
[25] |
XIONG Q, CAI W J, HE M J. Equivalent transfer function method for PI/PID controller design of MIMO processes[J]. Journal of Process Control, 2007, 17(8):665-673.
|
[26] |
吴晓威, 张井岗, 赵志诚. 多变量系统的PID控制器设计[J]. 信息与控制, 2008, 37(3):316-321. WU X W, ZHANG J G, ZHAO Z C. Design of a PID controller for multivariable systems[J]. Information and Control, 2008, 37(3):316-321.
|
[27] |
王德普. 多变量频域控制理论的对角优势化发展[J]. 哈尔滨船舶工程学院学报, 1989, 10(4):418-424. WANG D P. Diagonal dominance for the design of multivariable control systems[J]. Journal of Harbin Shipbuilding Engineering Institute, 1989, 10 (4):418-424.
|
[28] |
VLACHOS C, WILLIAMS D, GOMM J B. Solution to the Shell standard control problem using genetically tuned PID controllers[J]. Control Engineering Practice, 2002, 10(2):151-163.
|
[29] |
段玉波, 周毅平, 陈广义, 等. 逆奈奎斯特阵列法在蒸汽锅炉温度控制系统设计中的应用[J]. 哈尔滨工程大学学报, 1995, 16(2):18-22. DUAN Y B, ZHOU Y P, CHEN G Y, et al. The application of inverse Nyquist array in boiler temperature control system design[J]. Journal of Harbin Engineering University, 1995, 16(2):18-22.
|