[1] |
DEBRINCAT D, LOO C E, HUTCHENS M F. Effect of iron ore particle assimilation on sinter structure[J]. ISIJ Int., 2004, 44:1308-1317.
|
[2] |
HIGUCHI K, NAITO M, NAKANO M, et al. Optimization of chemical composition and microstructure of iron ore sinter for low-temperature drip of molten iron with high permeability[J]. ISIJ Int., 2004, 44:2057-2066.
|
[3] |
LOO C E, HEIKKINEN J. Structural transformation of beds during iron ore sintering[J]. ISIJ Int., 2012, 52:2158-2167.
|
[4] |
LOO C E, ELLIS B G. Changing bed bulk density and other process conditions during iron ore sintering[J]. ISIJ Int., 2014, 54:19-28.
|
[5] |
ZHOU H, ZHOU M X, LIU Z H, et al. Factors controlling high-temperature zone resistance to airflow during iron ore sintering[J]. ISIJ Int., 2015, 55:2556-2565.
|
[6] |
LIU Y, YANG J, WANG J, et al. Energy and exergy analysis for waste heat cascade utilization in sinter cooling bed[J]. Energy, 2014, 67:370-380.
|
[7] |
ZHANG X H, CHEN Z, ZHANG J Y, et al. Simulation and optimization of waste heat recovery in sinter cooling process[J]. Appl. Therm. Eng., 2013, 54:7-15.
|
[8] |
YANG J Y, CHIU Y W. 3-D transient conjugated heat transfer and fluid flow analysis for the cooling process of sintered bed[J]. Appl. Therm. Eng., 2009, 29:2895-2903.
|
[9] |
NATSUI S, TAKAI H, NASHIMOTO R, et al. Model study of the effect of particles structure on the heat and mass transfer through the packed bed in ironmaking blast furnace[J]. Int. J. Heat Mass Transfer, 2015, 91:1176-1186.
|
[10] |
FU D, CHEN Y, ZHAO Y F, et al. CFD modeling of multiphase reacting flow in blast furnace shaft with layered burden[J]. Appl. Therm. Eng., 2014, 66:298-308.
|
[11] |
AKIYAMA T, OHTA H, TAKAHASHI R, et al. Measurement and modeling of thermal conductivity for dense iron oxide and porous iron ore agglomerates in stepwise reduction[J]. ISIJ Int., 1992, 32:829-837.
|
[12] |
SUNDARMURTI N S, RAO V. Effect of firing temperature and porosity on thermal conductivity and diffusivity of iron ore pellets[J]. ISIJ Int., 1996, 36:991-999.
|
[13] |
SUNDARMURTI N S, RAO V. Thermal conductivity and diffusivity of iron ore pellet having low porosity[J]. ISIJ Int., 2002, 42:800-802.
|
[14] |
TIAN F Y, HUANG L F, FAN L W, et al. A comprehensive characterization on the structural and thermophysical properties of sintered ore particles toward waste heat recovery applications[J]. Appl. Therm. Eng., 2015, 90:1007-1014.
|
[15] |
NISHIOKA K, MURAYAMA T, ONO Y. Estimation of effective thermal diffusivity of porous solid using data for image processing[J]. ISIJ Int., 1996, 36:150-155.
|
[16] |
AIZAWA T, SUWA Y. Meso-porous modeling for theoretical analysis of sinter ores by the phase-field, unit-cell method[J]. ISIJ Int., 2005, 45:587-593.
|
[17] |
MAIRE E, WITHERS P J. Quantitative X-ray tomography[J]. Int. Mater. Reviews, 2016, 59:1-44.
|
[18] |
ZAFARI M, PANJEPOUR M, EMAMI M D. Microtomography-based numerical simulation of fluid flow and heat transfer in open cell metal foams[J]. Appl. Therm. Eng., 2015, 80:347-354.
|
[19] |
RANUT P, NOBILE E, MANCINI L. High resolution microtomography-based CFD simulation of flow and heat transfer in aluminum metal foams[J]. Appl. Therm. Eng., 2014, 69:230-240.
|
[20] |
YANG L, ZHAO J F, LIU W G, et al. Experimental study on the effective thermal conductivity on hydrate-bearing sediments[J]. Energy, 2015, 79:203-211.
|
[21] |
CHUNG S Y, HAN T S, KIM S Y, et al. Evaluation of effect of glass beads on thermal conductivity of insulating concrete using micro CT images and probability functions[J]. Cem. Concr. Compos., 2016, 65:150-162.
|
[22] |
KASAMA S, INAZUMI T, NAKAYASU T. New analysis method of sinter cake pore structure for permeability evaluation[J]. ISIJ Int., 1994, 34:562-569.
|
[23] |
NAKANO M, KAWAGUCHI T, KASAMA S, et al. Analysis of three dimensional structure of iron-ore sintercake[J]. ISIJ Int., 1997, 37:339-344.
|
[24] |
NUSHIRO K, OYAMA N, IGAWA K, et al. Analysis of flow behavior of fluid during sintering process with large amount of pisolitic ore by hot stage X-ray CT scanner[J]. Tetsu Hagane J. ISIJ, 1997, 83:472-478.
|
[25] |
NAKANO M, KASAMA S, HOSOTANI Y. Effects of limestone size on pore structure of sintercake of iron ore[J]. Tetsu Hagane J. ISIJ, 1999, 85:711-716.
|
[26] |
SHATOKHA V, KOROBEYNIKOV I, MAIRE E, et al. Iron ore sinter porosity characterisation with application of 3D X-ray tomography[J]. Ironmak. Steelmak., 2010, 37:313-319.
|
[27] |
ZHOU H, ZHOU M X, LIU Z H, et al. Modeling NOx emissions of coke combustion in iron ore sintering process and its experimental validation[J]. Fuel, 2016, 179:922-931.
|
[28] |
ZHOU H, ZHOU M X, CHENG M, et al. Experimental study and X-ray microtomography based CFD simulation for the characterization of pressure drop in sinter bed[J]. Appl. Therm. Eng., 2017, 112:811-819.
|
[29] |
BHAGAT R P, CHATTORAJ U S, SIL S K. Porosity of sinter and its relation with the sintering indices[J]. ISIJ Int., 2006, 46:1728-1730.
|
[30] |
ZHOU H, ZHOU M X, O'DEA D P, et al. Influence of binder dosage on granule structure and packed bed properties in iron ore sintering process[J]. ISIJ Int., 2016, 56:1920-1928.
|
[31] |
ZHOU M X, ZHOU H, O'DEA D P, et al. Characterization of granule structure and packed bed properties of iron ore sinter feeds that contain concentrate[J]. ISIJ Int., 2016, 57:1004-1011.
|
[32] |
HOSOTANI Y, KONNO N, YAMAGUCHI K, et al. Reduction properties of sinter with fine dispersed pores at high temperatures of 1273 K and above[J]. ISIJ Int., 1996, 36:1439-1447.
|
[33] |
WANG M, PAN N. Predictions of effective physical properties of complex multiphase materials[J]. Mater. Sci. Eng. R-Rep., 2008, 63:1-30.
|
[34] |
GAO L, GU J Z. Effective dielectric constant of a two-component material with shape distribution[J]. J. Phys. D:Appl. Phys., 2002, 35:267-271.
|
[35] |
BHATTACHARYA A, CALMIDI V, MAHAJAN R. Thermophysical properties of high porosity metal foams[J]. Int. J. Heat Mass Tran., 2002, 45:1017-1031.
|
[36] |
SINGH R, KASANA H. Computational aspects of effective thermal conductivity of highly porous metal foams[J]. Appl. Therm. Eng., 2004, 24:1841-1849.
|
[37] |
KAVIANY M. Principles of Heat Transfer in Porous Media[M]. 2nd ed. New York:Springer, 1999.
|