CIESC Journal ›› 2018, Vol. 69 ›› Issue (2): 611-617.DOI: 10.11949/j.issn.0438-1157.20171242
Previous Articles Next Articles
ZHAO Liang, WU Chenyue, LIN Xiaodan, WU Yingchun, WU Xuecheng, ZHOU Yonggang, QIU Kunzan, CEN Kefa
Received:
2017-09-11
Revised:
2017-11-27
Online:
2018-02-05
Published:
2018-02-05
Supported by:
supported by the National Natural Science Foundation of China (51576177), the Major Program of the National Natural Science Foundation of China (51390491) and the National Basic Research Program of China (2015CB251501).
赵亮, 吴晨月, 林小丹, 吴迎春, 吴学成, 周永刚, 邱坤赞, 岑可法
通讯作者:
吴学成
基金资助:
国家自然科学基金项目(51576177);国家自然科学基金重大项目(51390491);国家重点基础研究发展计划项目(2015CB251501)。
CLC Number:
ZHAO Liang, WU Chenyue, LIN Xiaodan, WU Yingchun, WU Xuecheng, ZHOU Yonggang, QIU Kunzan, CEN Kefa. On-line measurement of coal powder size distribution using digital holography[J]. CIESC Journal, 2018, 69(2): 611-617.
赵亮, 吴晨月, 林小丹, 吴迎春, 吴学成, 周永刚, 邱坤赞, 岑可法. 数字全息在线测量煤粉粒度分布[J]. 化工学报, 2018, 69(2): 611-617.
[1] | 姜秀民, 李巨斌, 邱健荣. 煤粉颗粒粒度对煤质分析特性与燃烧特性的影响[J]. 煤炭学报, 1999, 24(6):643-647. JIANG X M, LI J B, QIU J R. The influence of particle size on compositions analyzing and combustion characteristics of pulverized coal[J]. Journal of China Coal Society, 1999, 24(6):643-647. |
[2] | 薛兴华, 王运泉, 肖晨生, 等. 电厂煤粉粒度特征及其对煤粒燃烧的影响[J]. 煤炭转化, 2006, 29(3):58-61. XUE X H, WANG Y Q, XIAO C S, et al. Size characteristic of pulverized coal and its effect on coal particle combustion in coal fired power plant[J]. Coal Conversion, 2006, 29(3):58-61. |
[3] | 金晶, 李瑞阳, 张忠孝. 煤粉粒度对煤粉燃烧NOx排放的影响[J]. 环境科学学报, 2005, 25(4):502-506. JING J, LI R Y, ZHANG Z X. The effect of pulverized coal size on nitrogen oxides emission performance from pulverized coal combustion[J]. Acta Scientiae Circumstantiae, 2005, 25(4):502-506. |
[4] | SUNG Y, MOON C, EOM S, et al. Coal-particle size effects on NO reduction and burnout characteristics with air-staged combustion in a pulverized coal-fired furnace[J]. Fuel, 2016, 182:558-567. |
[5] | LI Q, JIANG J, ZHANG Q, et al. Influences of coal size, volatile matter content, and additive on primary particulate matter emissions from household stove combustion[J]. Fuel, 2016, 182:780-787. |
[6] | 刁源生. 筛分法测定钛精矿粒度分布[J]. 中国粉体技术, 2015, 21(3):76-79. DIAO Y S. Determination of particle size distribution for titanium concentrate by sieving method[J]. China Powder Science and Technology, 2015, 21(3):76-79. |
[7] | 刘辉, 史学峰, 李丽珍. 筛分法和显微镜法对矿化垃圾粒径分布的比较[J]. 环境工程学报, 2014, 8(9):4007-4011. LIU H, SHI X F, LI L Z. Comparative between sieving method and microscope in particle size distribution of aged refuse[J]. Chinese Journal of Environmental Engineering, 2014, 8(9):4007-4011. |
[8] | 鲁应华. 激光粒度法测定煤粉粒度分布[J]. 大氮肥, 2012, 35(5):303-306. LU Y H. Measurement of particle-size distribution of pulverized-coal by laser-granularity method[J]. Large Nitrogenous Fertilizer Industry, 2012, 35(5):303-306. |
[9] | 卢珊珊, 陆海峰, 郭晓镭, 等. 激光粒度仪测定煤粉粒度及分布的方法研究[J]. 中国粉体技术, 2010, 16(4):5-8. LU S S, LU H F, GUO X L, et al. Determination method of particle size and distribution of coal by laser size analyzes[J]. China Powder Science and Technology, 2010, 16(4):5-8. |
[10] | CARTER R M, YAN Y. On-line particle sizing of pulverized and granular fuels using digital imaging techniques[J]. Measurement Science & Technology, 2003, 14(7):1099. |
[11] | QIAN X, YAN Y, WANG L, et al. An integrated multi-channel electrostatic sensing and digital imaging system for the on-line measurement of biomass-coal particles in fuel injection pipelines[J]. Fuel, 2015, 151:2-10. |
[12] | GAO L, YAN Y, CARTER R M, et al. On-line particle sizing of pneumatically conveyed biomass particles using piezoelectric sensors[J]. Fuel, 2013, 113:810-816. |
[13] | ZHOU J, CAO Z, XIE H, et al. Compressive sensing for particle size retrieval by using a digital micro-mirror device-based detector[J]. Powder Technology, 2016, 304:27-31. |
[14] | ZHANG J Q, YAN Y. On-line continuous measurement of particle size using electrostatic sensors[J]. Powder Technology, 2003, 135/136:164-168. |
[15] | 杨红波, 杨磊. 超声衰减粒度仪在煤粉粒度测量中的应用[J]. 中国仪器仪表, 2012, 5:67-69. YANG H B, YANG L. Ultrasonic attenuation particle size analyzer is used on the particle size measurement of coal[J]. China Instrumentation, 2012, 5:67-69. |
[16] | 苏明旭, 袁安利, 周健明, 等. 超声衰减与光散射法蒸汽液滴粒径和含量对比测试[J]. 中南大学学报(自然科学版), 2016, 47(2):654-660. SU M X, YUAN A L, ZHOU J M, et al. Measurement of steam droplet size and content:a comparison of ultrasonic attention and light scattering[J]. Journal of Central South University (Science and Technology), 2016, 47(2):654-660. |
[17] | 苏明旭, 周健明, 汪雪, 等. 超声谱法在颗粒两相流测量中的应用进展[J]. 中国粉体技术, 2016, 22(5):22-27. SU M X, ZHOU J M, WANG X, et al. Developments and applications of ultrasound spectroscopy in particle characterization[J]. Powder Science and Technology, 2016, 22(5):22-27. |
[18] | 蔡小舒, 欧阳新, 李俊峰, 等. 电厂煤粉在线实测研究[J]. 工程热物理学报, 2002, 23(6):753-756. CAI X S, OUYANG X, LI J F, et al. Online measurement of pulverized coal at power station[J]. Journal of Engineering Thermophysics, 2002, 23(6):753-756. |
[19] | 蔡小舒, 潘咏志, 欧阳新, 等. 电厂煤粉管道中煤粉运行状况诊断研究[J]. 中国电机工程学报, 2001, 21(7):84-87. CAI X S, PAN Y Z, OUYANG X, et al. The study of diagnosing the running condition of pulverized coal in pipe[J]. Proceedings of the CSEE, 2001, 21(7):84-87. |
[20] | 秦授轩, 蔡小舒. 在线测量煤粉粒度分布和浓度的实验研究[J]. 中国电机工程学报, 2010, 30(32):30-34. QIN S X, CAI X S. Experimental study on in-line measurement of size distribution and concentration of pulverized coal[J]. Proceedings of the CSEE, 2010, 30(32):30-34. |
[21] | GABOR D. A new microscopic principle[J]. Nature, 1948, 161(4098):777. |
[22] | 王广俊. 数字全息技术及其在测量中的应用研究[D]. 北京:北京工业大学, 2011. WANG G J. Study on digital holography and its applications in the field of measurement[D]. Beijing:Beijing University of Technology, 2011. |
[23] | WU Y, WU X, YAO L, et al. 3D boundary line measurement of irregular particle with digital holography[J]. Powder Technology, 2016, 295:96-103. |
[24] | GUNDOGDU O. Positron emission zone plate holography for particle tracking[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 556(2):624-640. |
[25] | WICHITWONG W, CO TMELLEC S, LEBRUN D, et al. Long exposure time digital in-line holography for the trajectography of micronic particles within a suspended millimetric droplet[J]. Optics Communications, 2014, 326:160-165. |
[26] | HIRSCH J E. Apparent increase in the thickness of superconducting particles at low temperatures measured by electron holography[J]. Ultramicroscopy, 2013, 133:67-71. |
[27] | 周斌武, 吴学成, 吴迎春, 等. 数字显微全息中记录参数对颗粒测量影响的数值模拟[J]. 物理学报, 2013, 20:1-8. ZHOU B W, WU X C, WU Y C, et al. Influence of recording parameters on particle field measurement by digital holographic microscopy:a numerical investigation[J]. Acta Physica Sinica, 2013, 20:1-8. |
[28] | MURATA S, YASUDA N. Potential of digital holography in particle measurement[J]. Optics & Laser Technology, 2000, 32(7/8):567-574. |
[29] | 吴学成, 浦兴国, 浦世亮, 等. 激光数字全息应用于两相流颗粒粒径测量[J]. 化工学报, 2009, 60(2):310-316. WU X C, PU X G, PU S L, et al. Particle sizing for gas-solids flow with digital in-line holography[J]. CIESC Journal, 2009, 60(2):310-316. |
[30] | 王晓梦. 电厂60万千瓦机组煤粉浓度测量系统研究[D]. 南京:南京理工大学, 2014. WANG X M. Research on measurement of pulverized coal concentration of primary in power plant[D]. Nanjing:Nanjing University of Science and Technology, 2014.s & Laser Technology, 2000, 32(7-8):567-574. |
[29] | 吴学成, 浦兴国, 浦世亮, 等. 激光数字全息应用于两相流颗粒粒径测量[J]. 化工学报, 2009, 60(2):310-316. WU X C, PU X G, PU S L, et al. Particle sizing for gas-solids flow with digital in-line holography[J]. CIESC Journal, 2009, 60(2):310-316. |
[30] | 王晓梦. 电厂60万千瓦机组煤粉浓度测量系统研究[D]. 南京理工大学, 2014. WANG X M. Research on measurement of pulverized coal concentration of primary in power plant[D]. NUST, 2014. |
[1] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[2] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[3] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[4] | Mengbin ZHANG, Rui LI, Jiajie ZHANG, Suxia MA, Jiansheng ZHANG. Experimental study on dielectric properties of coal ash based on coplanar capacitance principle [J]. CIESC Journal, 2023, 74(7): 3028-3037. |
[5] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[6] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[7] | Hao ZHANG, Huibin XU, Jian GAO, Dihong LIU, Zehua ZHOU. Geldart-D wet particle tilt-fall behavior and its reinforcement [J]. CIESC Journal, 2023, 74(4): 1519-1527. |
[8] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[9] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
[10] | Longfei JIA, Shaotong FU, Xing XIANG, Huahai ZHANG, Tao ZHANG, Limin WANG. Lattice Boltzmann simulations of the effect of particles movement on momentum transfer process [J]. CIESC Journal, 2023, 74(2): 735-747. |
[11] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[12] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[13] | Tongpeng LU, Xiaolin PAN, Hongfei WU, Yu LI, Haiyan YU. Effect of organic flocculant on settling performance of iron-bearing minerals and its adsorption mechanism [J]. CIESC Journal, 2022, 73(9): 4122-4132. |
[14] | Wei ZHANG, Haoyang LI, Chungang XU, Xiaosen LI. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation [J]. CIESC Journal, 2022, 73(9): 3815-3827. |
[15] | Feng LIU, Quan WANG, Panyu WU, Guo WEI, Xiang HE. Effect of internal phase particle size on vibration resistance of on-site mixed emulsion explosive matrix [J]. CIESC Journal, 2022, 73(9): 4217-4225. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 759
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 436
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||