[1] |
LIU T, ZHOU T, YAO Y, et al. Stimulus methods of multi-functional shape memory polymer nanocomposites:a review[J]. Composites:Part A, 2017, 100:20-30.
|
[2] |
HAGER M D, BODE S, WEBER C, et al. Shape memory polymers:past, present and future developments[J]. Prog. Polym. Sci., 2015, 49:3-33.
|
[3] |
ZHANG Z, QI X, LI S, et al. Water-actuated shape-memory and mechanically-adaptive poly(ethylenevinyl acetate) achieved by adding hydrophilic poly (vinyl alcohol)[J]. Eur. Polym. J., 2018, 98:237-245.
|
[4] |
BROWN R, SINGH K V, KHAN F. Fabrication and vibration characterization of electrically triggered shape memory polymer beams[J]. Polymer Testing, 2017, 61:74-82.
|
[5] |
BABAAHMADI M, SABZI M, MAHDAVINIA G R, et al. Preparation of amorphous nanocomposites with quick heat triggered shape memory behavior[J]. Polymer, 2017, 112:26-34.
|
[6] |
BERG G J, MCBRIDE M K, WANG C, et al. New directions in the chemistry of shape memory polymers[J]. Polymer, 2014, 55(23):5849-5872.
|
[7] |
MA Y, YI G, WANG J, et al. Shape-controllable and -tailorable multiwalled carbon nanotube/MnO2/shape-memory polyurethane composite film for supercapacitor[J]. Synthetic Met., 2017, 223:67-72.
|
[8] |
XIE Z J, SEBALD G, GUYOMAR D. Temperature dependence of the elastocaloric effect in natural rubber[J]. Physics Letters A, 2017, 381(25/26):2112-2116.
|
[9] |
LENG J S, WU X L, LIU Y J. Infrared light-active shape memory polymer filled with nanocarbon particles[J]. J. Appl. Polym. Sci., 2009, 114(4):2455-2460.
|
[10] |
KOERNER H, PRICE G, PEARCE N A, et al. Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers[J]. Nat. Mater., 2004, 3(2):115-120.
|
[11] |
魏堃, 朱光明, 唐玉生. 电致型形状记忆聚合物复合材料的研究进展[J]. 材料导报, 2011, 25(7):9-12. WEI K, ZHU G M, TANG Y S. Research progress in electro-induced shape memory polymer composites[J]. Mater. Rev., 2011, 25(7):9-12.
|
[12] |
MOHR R, KRATZ K, WEIGEL T, et al. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers[J]. Proceeding of the National Academy of Sciences of the United States of America, 2006, 103(10):3540-3545.
|
[13] |
LI G, YAN Q, XIA H S, et al. Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly(vinyl alcohol) physical hydrogel[J]. ACS Appl. Mater. Interfaces, 2015, 7(22):12067-12073.
|
[14] |
HE Z W, SATARKAR N, XIE T, et al. Remote controlled multishape polymer nanocomposites with selective radio frequency actuations[J]. Adv. Mater., 2011, 23(28):3192-3196.
|
[15] |
YU K, LIU Y J, LENG J S. Shape memory polymer/CNT composites and their microwave induced shape memory behaviors[J]. RSC Adv., 2014, 4(6):2961-2968.
|
[16] |
ZHANG F H, ZHOU T Y, LIU Y J, et al. Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed[J]. Sci. Rep., 2015, 5:11152-11164.
|
[17] |
MALLAKPOUR S, RAFIEE Z. New developments in polymer science and technology using combination of ionic liquids and microwave irradiation[J]. Prog. Polym. Sci., 2011, 36(12):1754-1765.
|
[18] |
KEMPE K, BECER C R, SCHUBERT U S. Microwave-assisted polymerizations:recent status and future perspectives[J]. Macromolecules, 2011, 44(15):5825-5842.
|
[19] |
张恒, 周志彬, 聂进. 离子液体聚合物的研究进展[J]. 化学进展, 2013, 25(5):761-774. ZHANG H, ZHOU Z B, NIE J. Recent advances of polymeric ionic liquids[J]. Prog. Chem., 2013, 25(5):761-774.
|
[20] |
TANG J B, TANG H D, SUN W L, et al. Poly(ionic liquid)s as new materials for CO2 absorption[J]. Journal of Polymer Science:Part A:Polymer Chemistry, 2005, 43:5477-5489.
|
[21] |
SUSAN M A, KANEKO T, NODA A, et al. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes[J]. J. Am. Chem. Soc., 2005, 127(13):4976-4983.
|
[22] |
BREGAR V B. Advantages of ferromagnetic nanoparticle composites in microwave absorbers[J]. Trans. Magn., 2004, 40:1679-1684.
|
[23] |
TANG J B, RADOSZ M, SHEN Y Q. Poly(ionic liquid)s as optically transparent microwave-absorbing materials[J]. Macromolecules, 2008, 41(2):493-496.
|
[24] |
MECERREYES D. Polymeric ionic liquids:broadening the properties and applications of polyelectrolytes[J]. Prog. Polym. Sci., 2011, 36(12):1629-1648.
|
[25] |
LEE S, BECHT G A, LEE B, et al. Electropolymerization of a bifunctional ionic liquid monomer yields as electroactive liquidcrystalline polymer[J]. Adv. Funct. Mater., 2010, 20(13):2063-2070.
|
[26] |
OHKI T, NI Q Q, OHSAKO N, et al. Mechanical and shape memory behavior of composites with shape memory polymer[J]. Compos. Part A, 2004, 35(9):1065-1073.
|
[27] |
DU H Y, ZHOU T, ZHANG J H, et al. Moving-window twodimensional correlation infrared spectroscopy study on structural variations of partially hydrolyzed poly(vinyl alcohol)[J]. Anal. Bioanal. Chem., 2010, 397(7):3127-3132.
|
[28] |
MALLAKPOUR S, RAFIEE Z. New developments in polymer science and technology using combination of ionic liquids and microwave irradiation[J]. Prog. Polym. Sci., 2011, 36(12):1754-1765.
|
[29] |
MICHEL A, FRANK E, DOUGLAS R. Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature Material, 2009, 8:621-629.
|
[30] |
NAKAMURA K, FUKAO K, INOUE T. Dielectric relaxation and viscoelastic behavior of polymerized ionic liquids with various counteranions[J]. Macromolecules, 2012, 45(9):3850-3858.
|
[31] |
GUO M, HAYAKAWA T, KAKIMOTO M, et al. Organic macromolecular high dielectric constant materials:synthesis, characterization, and applications[J]. J. Phys. Chem. B, 2011, 115(46):13419-13432.
|