[1] |
KHALIGH A, ONAR O C. Energy Harvesting:Solar, Wind, and Ocean Energy Conversion Systems[M]. Boca Raton:CRC Press:2009.
|
[2] |
陈霞, 蒋晨啸, 汪耀明, 等. 反向电渗析在新能源及环境保护应用中的研究进展[J]. 化工学报, 2018, 69(1):188-202. CHEN X, JIANG C X, WANG Y M, et al. Advances in reverse electrodialysis and its applications on renewable energy & environment protection[J]. CIESC Journal, 2018, 69(1):188-202.
|
[3] |
STERNBERG R. Hydropower's future, the environment, and global electricity systems[J]. Renewable and Sustainable Energy Reviews, 2010, 14:713-723.
|
[4] |
THAMSIRIROJ T, MURPHY J D. A critical review of the applicability of biodiesel and grass biomethane as biofuels to satisfy both biofuel targets and sustainability criteria[J]. Apply Energy, 2011, 88(4):1008-1019.
|
[5] |
PATTLE R. Production of electric power by mixing fresh and salt water in the hydroelectric pile[J]. Nature, 1954, 174:660.
|
[6] |
邓会宁, 田明, 杨秀丽, 等. 反电渗析法海洋盐差电池的结构优化与能量分析[J]. 化工学报, 2015, 66(5):1919-1924. DENG H N, TIAN M, YANG X L, et al. Structure optimization and energy analysis of reverse electrodialysis to recover energy of oceanic salinity gradient[J]. CIESC Journal, 2015, 66(5):1919-1924.
|
[7] |
WICK G L, SCHMITT W R. Prospects for renewable energy from sea[J]. Marine Technology Society Journal, 1977, 11(5):16-21.
|
[8] |
徐士鸣, 吴曦, 吴德兵, 等, 从吸收制冷到逆向电渗析发电——溶液浓差能应用新技术[J]. 制冷技术, 2017, 37(2):8-13. XU S M, WU X, WU D B. et al. From absorption refrigeration to reverse electrodialysis power generation:a novel application technology for solution concentration gradient[J]. Chinese Journal of Refrigeration Technology, 2017, 37(2):8-13.
|
[9] |
POST J W, VEERMAN J, HAMELERS H V M, et al. Salinity-gradient power:evaluation of pressure-retarded osmosis and reverse electrodialysis[J]. Journal of Membrane Science, 2007, 288(1/2):218-230.
|
[10] |
VEERMAN J, SAAKES M, METZ S, et al. Reverse electrodialysis:evaluation of suitable electrode systems[J]. Journal of Applicational Electrochemistry, 2010, 40(8):1461-1474.
|
[11] |
BROGIOLI D, ZHAO R, Biesheuvel P. A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes[J]. Energy Environment Science, 2011, 4(3):772-777.
|
[12] |
徐士鸣, 吴曦, 冷强. 一种利用低品位热降解高浓有机废水方法:201711384061.2[P]. 2017-12-20. XU S M, WU X, LENG Q. A degradation method for high concentration organic waste water powered by low-grade thermal energy:201711384061.2[P]. 2017-12-20.
|
[13] |
Cipollina A, Micale G. Sustainable Energy from Salinity Gradients[M]. Duxford:Woodhead Publishing, 2016.
|
[14] |
VERMAAS D A, SAAKES M, NIJMEIJER K. Doubled power density from salinity gradients at reduced inter-membrane distance[J]. Environmental Science & Technology, 2011, 45(16):7089-7095.
|
[15] |
VEERMAN J, SAAKES M, METZ S, et al. Reverse electrodialysis:performance of a stack with 50 cells on the mixing of sea and river water[J]. Journal of Membrane Science, 2009, 327(1):136-144.
|
[16] |
VEERMAN J, SAAKES M, METZ S J, et al. Electrical power from sea and river water by reverse electrodialysis:a first step from the laboratory to a real power plant[J]. Environmental Science & Technology, 2010, 44(23):9207-9212.
|
[17] |
VEERMAN J, DE J R, SAAKES M, et al. Reverse electrodialysis:comparison of six commercial membrane pairs on the thermodynamic efficiency and power density[J]. Journal of Membrane Science, 2009, 343(1):7-15.
|
[18] |
POST J W, HAMELERS H M, BUISMAN C N. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system[J]. Environmental Science & Technology, 2008, 42(15):5785-5790.
|
[19] |
DLUGOLECKI P, DABROWSKA J, NIJMEIJER K, et al. Ion conductive spacers for increased power generation in reverse electrodialysis[J]. Journal of Membrane Science, 2010, 347(1):101-107.
|
[20] |
WU X, XU S M, WU D B, et al. Electric conductivity and electric convertibility of potassium acetate in water, ethanol, 2,2,2-trifluoroethanol, 2-propanol and their binary blends[J]. Chinese Journal of Chemical Engineering, 2018, DOI:10.1016/j.cjche.2018.06.004
|
[21] |
D?UGO? E P, NYMEIJER K, METZ S, et al. Current status of ion exchange membranes for power generation from salinity gradients[J]. Journal of Membrane Science, 2008, 319(1):214-222.
|
[22] |
RAMON G Z, FEINBERG B J, HOEK E M V. Membrane-based production of salinity-gradient power[J]. Energy Environment Science, 2011, 4(11):4423.
|
[23] |
STRATHMANN H. Ion-Exchange Membrane Separation Processes[M]. Amsterdam:Elsevier Science, 2004.
|
[24] |
TEDESCO M, HAMELERS H V M, BIESHEUVEL P M. Nernst-Planck transport theory for (reverse) electrodialysis(Ⅰ):Effect of co-ion transport through the membranes[J]. Journal of Membrane Science, 2016, 510:370-381.
|
[25] |
TEDESCO M, HAMELERS H V M, BIESHEUVEL P M. Nernst-Planck transport theory for (reverse) electrodialysis(Ⅱ):Effect of water transport through ion-exchange membranes[J]. Journal of Membrane Science, 2017, 531:172-182.
|
[26] |
BURGOT J L. The Notion of Activity in Chemistry[M]. Switzerland:Springer, 2017.
|
[27] |
徐士鸣, 吴德兵, 吴曦, 等. 氯化锂溶液为工质的溶液浓差发电实验研究[J], 大连理工大学学报, 2017, 57(4):337-344. XU S M, WU D B, WU X, et al. Experimental study of solution concentration difference power generation with lithium chloride solution as working fluid[J]. Journal of Dalian University of Technology, 2017, 57(4):337-344.
|
[28] |
柯山星, 杨琳. 溶液当量电导与浓度的关系及其应用[J]. 安庆师院学报(自然科学版), 1996, 2(2):23-28. KE S X, YANG L. Relationship between solution equivalent conductance and concentration and its application[J]. Journal of Anqing Normal College (Natural Science), 1996, 2(2):23-28.
|
[29] |
KREYSA G, OTA K I, SAVINELL R F. Encyclopedia of Applied Electrochemistry[M]. New York:Springer, 2014.
|
[30] |
HAN X H, YANG Z Z, GAO Z J, et al. Isothermal vapor-liquid equilibrium of HFC-161+ DMETrEG within the temperature range of 293.15-353.15 K and comparison for HFC-161 combined with different absorbents[J]. Journal of Chemical and Engineering Data, 2016, 61(3):1321-1327.
|