[1] |
LI S. The developments of Chinese oil shale activities[J]. Estonian Academy Publishers, 2012, 29(2):101-102.
|
[2] |
钱家麟, 王剑秋, 李术元. 世界油页岩资源利用和发展趋势[J]. 吉林大学学报(地球科学版), 2006, (6):877-887. QIAN J L, WANG J Q, LI S Y. World oil shale utilization and its future[J]. Journal of Jilin University(Earth Science Edition), 2006, (6):877-887.
|
[3] |
CHENG H, LIU Q, LIU J, et al. TG-MS-FTIR (evolved gas analysis) of kaolinite-urea intercalation complex[J]. Journal of Thermal Analysis & Calorimetry, 2014, 116(1):195-203.
|
[4] |
SCACCIA S. TG-FTIR and kinetics of devolatilization of Sulcis coal[J]. Journal of Analytical & Applied Pyrolysis, 2013, 104(104):95-102.
|
[5] |
柏静儒, 潘朔, 王擎. 油页岩低温热解过程中轻质气体的析出特性[J]. 化工学报, 2015, 66(3):1104-1110. BAI J R, PAN S, WANG Q. Characteristics of light gases evolution during oil shale pyrolysis[J]. CIESC Journal, 2015, 66(3):1104-1110.
|
[6] |
TIAN L, SHEN B, XU H, et al. Thermal behavior of waste tea pyrolysis by TG-FTIR analysis[J]. Energy, 2016, 103:533-542.
|
[7] |
ARENILLAS A, RUBIERA F, PIS J J, et al. Thermal behaviour during the pyrolysis of low rank perhydrous coals[J]. Journal of Analytical & Applied Pyrolysis, 2003, 68(3):371-385.
|
[8] |
KALJUVEE T, PELT J, RADIN M. TG-FTIR study of gaseous compounds evolved at thermooxidation of oil shale[J]. Journal of Thermal Analysis & Calorimetry, 2004, 78(2):399-414.
|
[9] |
LIU J, JIANG X, SHEN J, et al. Pyrolysis of superfine pulverized coal (Part 1):Mechanisms of methane formation[J]. Energy Conversion & Management, 2014, 87(5):1027-1038.
|
[10] |
LIU J, JIANG X, SHEN J, et al. Pyrolysis of superfine pulverized coal (Part 2):Mechanisms of carbon monoxide formation[J]. Energy Conversion & Management, 2014, 87(5):1039-1049.
|
[11] |
TIWARI P, DEO M. Compositional and kinetic analysis of oil shale pyrolysis using TGA-MS[J]. Fuel, 2012, 94(5):333-341.
|
[12] |
PORADA S. The reactions of formation of selected gas products during coal pyrolysis[J]. Fuel, 2004, 83(9):1191-1196.
|
[13] |
BURNHAM A K, OH M S, CRAWFORD R W, et al. Pyrolysis of Argonne premium coals:activation energy distributions and related chemistry[J]. Energy & Fuels, 1989, 3(1):42-55.
|
[14] |
HAO J, CHE Y, TIAN Y, et al. Study on thermal cracking characteristics and kinetics of oil sand bitumen and its SARA fractions by TG-FTIR[J]. Energy & Fuels, 2017, 31(2):1295-1309.
|
[15] |
王擎, 闫宇赫, 贾春霞, 等. 甘肃油页岩红外光谱分析及热解特性[J]. 化工进展, 2014, 33(7):1730-1734. WANG Q, YAN Y H, JIA C X, et al. FTIR analysis and pyrolysis characteristics of oil shale from Gansu province[J]. Chemical Industry and Engineering Progress, 2014, 33(7):1730-1734.
|
[16] |
HAN X X, JIANG X M, CUI Z G. Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale[J]. Applied Energy, 2009, 86(11):2381-2385.
|
[17] |
王擎, 黄宗越, 迟铭书, 等. 油页岩干酪根化学结构特性分析[J]. 化工学报, 2015, 66(5):1861-1866. WANG Q, HUANG Z Y, CHI M S, et al. Chemical structure analysis of oil shale kerogen[J]. CIESC Journal, 2015, 66(5):1861-1866.
|
[18] |
沈兴. 差热、热重分析与非等温固相反应动力学[M]. 北京:冶金工业出版社, 1995:75-76. SHEN X. DTA, TGA and Non-Isothermal Kinetics of Solid-Reactions[M]. Beijing:Metallurgical Industry Press, 1995:75-76.
|
[19] |
ARENILLAS A, RUBIERA F, PIS J J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behaviour of different rank coals[J]. Journal of Analytical & Applied Pyrolysis, 1999, 50(1):31-46.
|
[20] |
LIU P, ZHANG D, WANG L, et al. The structure and pyrolysis product distribution of lignite from different sedimentary environment[J]. Applied Energy, 2016, 163:254-262.
|
[21] |
徐芳, 刘辉, 王擎, 等. 霍林河褐煤化学结构特性的13C NMR与FTIR对比分析[J]. 化工学报, 2017, 68(11):4272-4278. XU F, LIU H, WANG Q, et al. Comparison analysis of Huolinhe lignite structural features by using 13C NMR & FTIR techniques[J]. CIESC Journal, 2017, 68(11):4272-4278.
|
[22] |
傅献彩, 沈文霞, 姚天扬. 物理化学:下册[M]. 4版. 北京:高等教育出版社, 1990. FU X C, SHEN W X, YAO T Y. Physical Chemistry:Volume 2[M]. 4th ed. Beijing:Higher Education Press, 1990.
|
[23] |
曾凡桂, 贾建波. 霍林河褐煤热解甲烷生成反应类型及动力学的热重-质谱实验与量子化学计算[J]. 物理化学学报, 2009, 25(6):1117-1124. ZENG F G, JIA J B. Reaction types and kinetics of methane generation from Huolinhe lignite pyrolysis by TG/MS experiment and quantum chemical calculations[J]. Acta Physico-Chimica Sinica, 2009, 25(6):1117-1124.
|
[24] |
BUTALA S J M, JUAN C M, TAYLOR T Q, et al. Mechanisms and kinetics of reactions leading to natural gas formation during coal maturation[J]. Energy & Fuels, 2000, 14(2):235-259.
|
[25] |
SHUAI Y, PENG P, ZOU Y R, et al. Kinetic modeling of individual gaseous component formed from coal in a confined system[J]. Organic Geochemistry, 2006, 37(8):932-943.
|
[26] |
CHARPENAY S, SERIO M A, ROSEMARY B A, et al. Influence of maturation on the pyrolysis products from coals and kerogens (1):Experiment[J]. Energy & Fuels, 1996, 10(1):26-38.
|
[27] |
CRAMER B. Methane generation from coal during open system pyrolysis investigated by isotope specific, Gaussian distributed reaction kinetics[J]. Organic Geochemistry, 2004, 35(4):379-392.
|
[28] |
HEEK K H V, HODEK W. Structure and pyrolysis behaviour of different coals and relevant model substances[J]. Fuel, 1994, 73(6):886-896.
|
[29] |
CAMPBELL J H, GALLEGOS G, GREGG M. Gas evolution during oil shale pyrolysis (2):Kinetic and stoichiometric analysis[J]. Fuel, 1980, 59(10):727-732.
|
[30] |
SUBASINGHE N D, AWAJA F, BHARGAVA S K. Variation of kerogen content and mineralogy in some Australian tertiary oil shales[J]. Fuel, 2009, 88(2):335-339.
|
[31] |
LORANT F, BEHAR F. Late generation of methane from mature kerogens[J]. Energy & Fuels, 2002, 16(2):412-427.
|
[32] |
LORANT F, FRANCOISE B A, VANDENBROUCKE M, et al. Methane generation from methylated aromatics: kinetic study and carbon isotope modeling[J]. Energy Fuels, 2013, 14(6):1143-1155.
|