CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 261-270.DOI: 10.11949/j.issn.0438-1157.20180567
• Energy and environmental engineering • Previous Articles Next Articles
Li ZHANG1(),Wenwu WANG1(),Zhi’en ZHANG2,Peisheng LIU3,Jiangbo WEN4,Liang DONG1
Received:
2018-05-28
Revised:
2018-10-10
Online:
2019-01-05
Published:
2019-01-05
Contact:
Wenwu WANG
张丽1(),王文武1(),张智恩2,刘培胜3,文江波4,董亮1
通讯作者:
王文武
作者简介:
张丽(1994—),女,硕士研究生,<email>zhanglili1229@hotmail.com</email>|王文武(1975—),男,硕士,讲师,<email>41116521@qq.com</email>
基金资助:
CLC Number:
Li ZHANG, Wenwu WANG, Zhi’en ZHANG, Peisheng LIU, Jiangbo WEN, Liang DONG. A waste heat recovery power generation system combined with natural gas liquefaction and CO2 capture[J]. CIESC Journal, 2019, 70(1): 261-270.
张丽, 王文武, 张智恩, 刘培胜, 文江波, 董亮. 一种天然气液化和CO2捕集相结合的余热回收发电系统[J]. 化工学报, 2019, 70(1): 261-270.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180567
Item | Value |
---|---|
exhaust gas inlet temperature/℃ | 260 |
exhaust gas inlet pressure/kPa | 110 |
mass flow rate of exhaust gas/(kg/h) | 20000 |
ambient temperature/℃ | 35 |
ambient pressure/kPa | 101 |
LNG inlet temperature/℃ | -162 |
LNG inlet pressure/kPa | 110 |
mass flow rate of LNG/(kg/h) | 15000 |
natural gas supply temperature/℃ | 10—20 |
amount of LNG liquefaction/(kg/h) | 10000 |
Table 1 Basic parameters of system
Item | Value |
---|---|
exhaust gas inlet temperature/℃ | 260 |
exhaust gas inlet pressure/kPa | 110 |
mass flow rate of exhaust gas/(kg/h) | 20000 |
ambient temperature/℃ | 35 |
ambient pressure/kPa | 101 |
LNG inlet temperature/℃ | -162 |
LNG inlet pressure/kPa | 110 |
mass flow rate of LNG/(kg/h) | 15000 |
natural gas supply temperature/℃ | 10—20 |
amount of LNG liquefaction/(kg/h) | 10000 |
Working fluid | Condensation temperature/℃ |
---|---|
R1150 | -102.7 |
R170 | -87.2 |
R32 | -50.1 |
R1270 | -46.2 |
R143a | -45.4 |
R290 | -40.3 |
R134a | -24.3 |
R152a | -22.7 |
Table 2 Condensation temperature of common working fluid (110 kPa)
Working fluid | Condensation temperature/℃ |
---|---|
R1150 | -102.7 |
R170 | -87.2 |
R32 | -50.1 |
R1270 | -46.2 |
R143a | -45.4 |
R290 | -40.3 |
R134a | -24.3 |
R152a | -22.7 |
Item | Pre-optimization results | Optimization results |
---|---|---|
compressor K112 outlet pressure/kPa | 900 | 909 |
compressor K112 inlet temperature/℃ | 20 | 18 |
compressor K113 outlet pressure/kPa | 1200 | 1172 |
compressor K114 outlet pressure/kPa | 1500 | 1500 |
compressor total power consumption/kW | 120 | 101.54 |
Table 3 Key parameters of nitrogen expansion refrigeration circulation
Item | Pre-optimization results | Optimization results |
---|---|---|
compressor K112 outlet pressure/kPa | 900 | 909 |
compressor K112 inlet temperature/℃ | 20 | 18 |
compressor K113 outlet pressure/kPa | 1200 | 1172 |
compressor K114 outlet pressure/kPa | 1500 | 1500 |
compressor total power consumption/kW | 120 | 101.54 |
Item | Maximum value | Item | Maximum value | |
---|---|---|---|---|
net output power in SAGD/ORC | CO2 captured quantity | LNG used to peak regulation | ||
evaporation temperature/℃ | 190 | compressor K110 inlet temperature/℃ | -10 | -100 |
turbine 1 outlet pressure/kPa | 200 | compressor K110 outlet pressure/kPa | 360 | 360 |
compressor outlet pressure/kPa | 200 | turbine 5 outlet pressure/kPa | 700 | 110 |
net output power/kW | 454.9 | nitrogen mass flow rate/(kg/h) | 4000 | 1000 |
thermal efficiency/% | 36.6 | CO2 compressor outlet pressure/kPa | 600 | 600 |
exergy efficiency/% | 31.4 | LNG used to peak regulation/(kg/h) | 192.8 | 378.8 |
waste heat recovery efficiency/% | 34.2 | CO2 captured quantity/% | 75 | 46.4 |
ηcold in refrigeration cycle/% | 87.7 | net output power/kW | 29.1 | 267.5 |
Table 4 Optimal calculation results of the whole system
Item | Maximum value | Item | Maximum value | |
---|---|---|---|---|
net output power in SAGD/ORC | CO2 captured quantity | LNG used to peak regulation | ||
evaporation temperature/℃ | 190 | compressor K110 inlet temperature/℃ | -10 | -100 |
turbine 1 outlet pressure/kPa | 200 | compressor K110 outlet pressure/kPa | 360 | 360 |
compressor outlet pressure/kPa | 200 | turbine 5 outlet pressure/kPa | 700 | 110 |
net output power/kW | 454.9 | nitrogen mass flow rate/(kg/h) | 4000 | 1000 |
thermal efficiency/% | 36.6 | CO2 compressor outlet pressure/kPa | 600 | 600 |
exergy efficiency/% | 31.4 | LNG used to peak regulation/(kg/h) | 192.8 | 378.8 |
waste heat recovery efficiency/% | 34.2 | CO2 captured quantity/% | 75 | 46.4 |
ηcold in refrigeration cycle/% | 87.7 | net output power/kW | 29.1 | 267.5 |
1 | 杨文学, 杨科学, 童建翔, 等. 稠油储罐余热回收利用改造技术[J]. 石油技师, 2015: 197-199. |
YangW X, YangK X, TongJ X, et al. Heavy oil storage tank waste heat recovery and utilization technology[J]. Oil Technician, 2015: 197-199. | |
2 | XiaoZ Z, WangS Z, YangJ P. Research on recovering waste heat from liquid produced in heavy oil exploitation by SAGD technology[J]. Advanced Materials Research, 2014, 960/961: 410-413. |
3 | WangB, ChengQ L, SunW, et al. Application of heat pump technology in waste heat recovery of oilfield sewage[J]. Contemporary Chemical Industry, 2015, 8(10): 34-44. |
4 | WangX. Application of high-temperature water source heat pump units in the waste heat recovery and utilization of waste water in the oilfield[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2017, 158(20): 60-70. |
5 | ZhuY. Promoting the utilization of sewage waste heat in the oilfield with boo management mode[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2017, 112(3): 8-15. |
6 | SrinivasanK K, MagoP J, KrishnanS R. Analysis of exhaust waste heat recovery from a dual fuel low temperature combustion engine using an organic Rankine cycle[J]. Energy, 2010, 35(6): 2387-2399. |
7 | 杨凯, 张红光, 宋松松, 等. 变工况下车用柴油机排气余热有机朗肯循环回收系统[J]. 化工学报, 2015, 66(3): 1097-1103. |
YangK, ZhangH G, SongS S, et al. Waste heat organic Rankine cycle of vehicle diesel engine under variable working conditions[J]. CIESC Journal, 2015, 66(3): 1097-1103. | |
8 | MagoP J, LuckR. Energetic and exergetic analysis of waste heat recovery from a microturbine using organic Rankine cycles[J]. International Journal of Energy Research, 2013, 37(8): 888-898. |
9 | PanZ, ZhangL, ZhangZ, et al. Thermodynamic analysis of KCS/ORC integrated power generation system with LNG cold energy exploitation and CO2 capture[J]. Journal of Natural Gas Science & Engineering, 2017, 46(8): 188-198. |
10 | 田华, 井东湛, 王轩, 等. 基于内燃机余热回收联产系统变工况特性分析[J]. 化工学报, 2018, 69(2): 792-800. |
TianH, JingD Z, WangX, et al. Part-load performance analysis of cogeneration system for engine waste heat recovery[J]. CIESC Journal, 2018, 69(2): 792-800. | |
11 | 仇阳, 潘振, 李萍, 等. 一种发电和天然气再液化相结合的LNG冷能利用系统[J]. 化工学报, 2017, 68(9): 3580-3591. |
QiuY, PanZ, LiP, et al. An LNG cold energy utilization system combined with power generation and natural gas re-liquefaction[J]. CIESC Journal, 2017, 68(9): 3580-3591. | |
12 | 常学煜, 张盈盈, 朱建鲁, 等. 一种蒸发天然气再液化氮膨胀制冷工艺流程的优化和海上适应性分析[J]. 化工进展, 2017, 36(5): 1619-1627. |
ChangX Y, ZhangY Y, ZhuJ L, et al. Optimization of the process of nitrogen expansion refrigeration of BOG and the analysis of the adaptability of the sea[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1619-1627. | |
13 | RaziM, SinhaS, WaghmareP R, et al. Effect of steam-assisted gravity drainage (SAGD) produced water properties on oil/water transient interfacial tension[J]. Energy & Fuels, 2016, 156(34): 324-330. |
14 | AshrafiO, NavarriP, HughesR, et al. Heat recovery optimization in a steam-assisted gravity drainage (SAGD) plant[J]. Energy, 2016, 111(20): 981-990. |
15 | LiP, LiJ, PeiG, et al. A cascade organic Rankine cycle power generation system using hybrid solar energy and liquefied natural gas[J]. Solar Energy, 2016, 127(8): 136-146. |
16 | GuoC, DuX, YangL, et al. Performance analysis of organic Rankine cycle based on location of heat transfer pinch point in evaporator[J]. Applied Thermal Engineering, 2014, 62(1): 176-186. |
17 | YuH, FengX, WangY. A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (organic Rankine cycle) recovering waste heat[J]. Energy, 2015, 90: 36-46. |
18 | 翁一武. 低品位热能转换过程及利用[M]. 上海: 上海交通大学出版社, 2014. |
WenY W. Conversion Process and Utilization of Low Grade Heat Energy[M]. Shanghai : Shanghai Jiao Tong University Press, 2014. | |
19 | CimsitC, OzturkI T, KincayO. Thermoeconomic optimization of LiBr/H2O-R134a compression-absorption cascade refrigeration cycle[J]. Applied Thermal Engineering, 2015, 76: 105-115. |
20 | ZegenhagenT, ZieglerF. Experimental investigation of the characteristics of a jet-ejector and a jet-ejector cooling system operating with R134a as a refrigerant[J]. International Journal of Refrigeration, 2015, 56: 173-185. |
21 | WangH, ShiX, CheD. Thermodynamic optimization of the operating parameters for a combined power cycle utilizing low-temperature waste heat and LNG cold energy[J]. Applied Thermal Engineering, 2013, 59(8): 490-497. |
22 | AaliA, PourmahmoudN, ZareV. Exergoeconomic analysis and multi-objective optimization of a novel combined flash-binary cycle for Sabalan geothermal power plant in Iran[J]. Energy Conversion & Management, 2017, 143(57): 377-390. |
23 | ZhaoY, WangJ. Exergoeconomic analysis and optimization of a flash-binary geothermal power system[J]. Applied Energy, 2016, 179(46): 159-170. |
24 | WangJ, WangJ, DaiY, et al. Thermodynamic analysis and optimization of a flash-binary geothermal power generation system[J]. Geothermics, 2015, 55(10): 69-77. |
25 | BassyouniM, HasanS W U, AbdelazizM H, et al. Date palm waste gasification in downdraft gasifier and simulation using ASPEN HYSYS[J]. Energy Conversion & Management, 2014, 88(7): 693-699. |
26 | SunnyA, SolomonP A, AparnaK. Syngas production from re-gasified liquefied natural gas and its simulation using Aspen HYSYS[J]. Journal of Natural Gas Science & Engineering, 2016, 30(2): 176-181. |
27 | ZhangN, LiorN, LiuM, et al. COOLCEP (cool clean efficient power): a novel CO2-capturing oxy-fuel power system with LNG (liquefied natural gas) coldness energy utilization[J]. Energy, 2010, 35(2): 1200-1210. |
28 | WangJ, WangJ, DaiY, et al. Thermodynamic analysis and optimization of a flash-binary geothermal power generation system[J]. Geothermics, 2015, 55(3): 69-77. |
29 | ShahN M, RangaiahG P, HoadleyA F A. Multi-objective optimization of multi-stage gas-phase refrigeration systems[M]// Multi-Objective Optimization: Techniques and Applications in Chemical Engineering (With CD-ROM). World Scientific,2009: 237-276. |
30 | SongR, CuiM, LiuJ. Single and multiple objective optimization of a natural gas liquefaction process[J]. Energy, 2017, 124(4): 19-28. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[4] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[5] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[6] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[7] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[8] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[9] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[10] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[11] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[12] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[13] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[14] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[15] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||