[1] |
PARK S, RUOFF R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4):217-224.
|
[2] |
ZHANG Y Y, GONG S S, ZHANG Q, et al. Graphene-based artificial nacre nanocomposites[J]. Chemical Society Reviews, 2016, 45(9):2378-2395.
|
[3] |
LI F, JIANG X, ZHAO J J, et al. Graphene oxide:a promising nanomaterial for energy and environmental applications[J]. Nano Energy, 2015, 16:488-515.
|
[4] |
NARAYAN R, KIM J E, KIM J Y, et al. Graphene oxide liquid crystals:discovery, evolution and applications[J]. Advanced Materials, 2016, 28(16):3045-3068.
|
[5] |
CHEN H, XU H Y, WANG S Y, et al. Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life[J]. Science Advances, 2017, 3(12):eaao7233.
|
[6] |
LIU X, SONG K D, LU C, et al. Electrospun PU@GO separators for advanced lithium ion batteries[J]. Journal of Membrane Science, 2018, 555:1-6.
|
[7] |
YE M H, GAO J, XIAO Y K, et al. Metal/graphene oxide batteries[J]. Carbon, 2017, 125:299-307.
|
[8] |
TAN Y L, CHU Z Y, JIANG Z H, et al. Gyrification-inspired highly convoluted graphene oxide patterns for ultralarge deforming actuators[J]. ACS Nano, 2017, 11(7):6843-6852.
|
[9] |
CHEN L Z, WENG M C, ZHOU P D, et al. Multi-responsive actuators based on a graphene oxide composite:intelligent robot and bioinspired applications[J]. Nanoscale, 2017, 9(28):9825-9833.
|
[10] |
WANG Y F, SONG C P, YU X H, et al. Thermo-responsive hydrogels with tunable transition temperature crosslinked by multifunctional graphene oxide nanosheets[J]. Composites Science and Technology, 2017, 151:139-146.
|
[11] |
MORELOS-GOMEZ A, CRUZ-SILVA R, MURAMATSU H, et al. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes[J]. Nature Nanotechnology, 2017, 12(11):1083-1088.
|
[12] |
ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12(6):546-550.
|
[13] |
ZHU Y W, MURALI S, CAI W W, et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35):3906-3924.
|
[14] |
CASABIANCA L B, SHAIBAT M A, CAI W W, et al. NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations[J]. Journal of the American Chemical Society, 2010, 132(16):5672-5676.
|
[15] |
TEXTER J. Colloidal graphene-scalable processing for advanced materials[J]. Current Opinion in Colloid & Interface Science, 2015, 20(5/6):454-4649.
|
[16] |
NIYOGI S, BEKYAROVA E, ITKIS M E, et al. Solution properties of graphite and graphene[J]. Journal of the American Chemical Society, 2006, 128(24):7720-7721.
|
[17] |
YANG Y Y, SONG S S, ZHAO Z D, et al. Graphene oxide (GO)/polyacrylamide (PAM) composite hydrogels as efficient cationic dye adsorbents[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 513:315-324.
|
[18] |
GENG H J. Preparation and characterization of cellulose/N,N¢-methylene bisacrylamide/graphene oxide hybrid hydrogels and aerogels[J]. Carbohydrate Polymers, 2018, 196:289-298.
|
[19] |
单国荣, 张宁. 氧化石墨烯复合水凝胶研究进展[J]. 化工学报, 2018, 69(2):535-545. SHAN G R, ZHANG N. Research progress on garphene oxide composite hydrogels[J]. CIESC Journal, 2018, 69(2):535-545.
|
[20] |
ZHANG L, WANG Z P, XU C, et al. High strength graphene oxide/polyvinyl alcohol composite hydrogels[J]. Journal of Materials Chemistry, 2011, 21(28):10399-10406.
|
[21] |
PARSAMANESH M, TEHRANI A D, MANSOURPANAH Y. Supramolecular hydrogel based on cyclodextrin modified GO as a potent natural organic matter absorbent[J]. European Polymer Journal, 2017, 92:126-136.
|
[22] |
ZHU C H, LU Y, PENG J, et al. Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves[J]. Advanced Functional Materials, 2012, 22(19):4017-4022.
|
[23] |
ABDELSAYED V, MOUSSA S, HASSAN H M, et al. Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature[J]. Journal of Physical Chemistry Letters, 2010, 1(19):2804-2809.
|
[24] |
KIM D, LEE H S, YOON J. Remote control of volume phase transition of hydrogels containing graphene oxide by visible light irradiation[J]. RSC Advances, 2014, 4(48):25379-25383.
|
[25] |
WANG E, DESAI M S, LEE S W. Light-controlled graphene-elastin composite hydrogel actuators[J]. Nano Letters, 2013, 13(6):2826-2830.
|
[26] |
LI W, WANG J S, REN J S, et al. 3D graphene oxide-polymer hydrogel:near-infrared light-triggered active scaffold for reversible cell capture and on-demand release[J]. Advanced Materials, 2013, 25(46):6737-6743.
|
[27] |
CHOU H T, CHEN Y C, LEE C Y, et al. Switchable transparency of dual-controlled smart glass prepared with hydrogel-containing graphene oxide for energy efficiency[J]. Solar Energy Materials and Solar Cells, 2017, 166:45-51.
|
[28] |
WANG J P, GAN D J, LYON L A, et al. Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions[J]. Journal of the American Chemical Society, 2001, 123(45):11284-11289.
|
[29] |
SAUNDERS B R, VINCENT B. Microgel particles as model colloids:theory, properties and applications[J]. Advances in Colloid & Interface Science, 1999, 80(1):1-25.
|
[30] |
ZHANG J T, HUANG S W, XUE Y N, et al. Poly(N-isopropylacrylamide) nanoparticle-incorporated PNIPAAm hydrogels with fast shrinking kinetics[J]. Macromolecular Rapid Communications, 2005, 26(16):1346-1350.
|
[31] |
陈勇, 单国荣. 丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵反相乳液聚合动力学[J]. 化工学报, 2018, 69(2):563-569. CHEN Y, SHAN G R. Kinetics of acrylamide and 2-methylacryloylxyethyltrimethyl ammonium chloride in inverse emulsion polymerization[J]. CIESC Journal, 2018, 69(2):563-569.
|