CIESC Journal ›› 2018, Vol. 69 ›› Issue (11): 4553-4565.DOI: 10.11949/j.issn.0438-1157.20180628
Previous Articles Next Articles
LIANG Miao1,2, YU Tao1, GAO Xiang3, SU Rongxin1, QI Wei1, HE Zhimin1
Received:
2018-06-11
Revised:
2018-07-23
Online:
2018-11-05
Published:
2018-11-05
Supported by:
supported by the National Natural Science Foundation of China (51473115), the State Key Laboratory of Chemical Engineering (SKL-ChE-14T04) and the Natural Science Foundation of Tianjin City (16JCZDJC37900).
梁淼1,2, 余涛1, 高翔3, 苏荣欣1, 齐崴1, 何志敏1
通讯作者:
苏荣欣
基金资助:
国家自然科学基金项目(51473115);化学工程联合国家重点实验室探索课题项目(SKL-ChE-14T04);天津市自然科学基金重点项目(16JCZDJC37900)。
CLC Number:
LIANG Miao, YU Tao, GAO Xiang, SU Rongxin, QI Wei, HE Zhimin. Fabrication of metal nanocomposites based on proteins and their self-assemblies as templates[J]. CIESC Journal, 2018, 69(11): 4553-4565.
梁淼, 余涛, 高翔, 苏荣欣, 齐崴, 何志敏. 基于蛋白及其组装体的金属纳米复合材料构建[J]. 化工学报, 2018, 69(11): 4553-4565.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180628
[1] | VOET A R, TAME J R. Protein-templated synthesis of metal-based nanomaterials[J]. Current Opinion in Biotechnology, 2017, 46(1):14-19. |
[2] | LI N, TITTL A, YUE S, et al. DNA-assembled bimetallic plasmonic nanosensors[J]. Light:Science & Applications, 2014, 3(1):e226. |
[3] | 梁淼. 金属纳米晶@多孔蛋白的复合材料制备及其催化应用[D]. 天津:天津大学, 2014. LIANG M. Fabrication and catalytic application of metal nanocrystals within porous protein-based materials[D]. Tianjin:Tianjin University, 2014. |
[4] | JONES O G, MEZZENGA R. Inhibiting, promoting, and preserving stability of functional protein fibrils[J]. Soft Matter, 2012, 8(4):876-895. |
[5] | LAGZIEL-SIMIS S, COHEN-HADAR N, MOSCOVICH-DAGAN H, et al. Protein-mediated nanoscale biotemplating[J]. Current Opinion in Biotechnology, 2006, 17(6):569-573. |
[6] | ABE S, MAITY B, UENO T. Design of a confined environment using protein cages and crystals for the development of biohybrid materials[J]. Chemical Communications, 2016, 52(39):6496-6512. |
[7] | LI C, CHEN H, CHEN B, et al. Highly fluorescent gold nanoclusters stabilized by food proteins:from preparation to application in detection of food contaminants and bioactive nutrients[J]. Critical Reviews in Food Science and Nutrition, 2016, 58(5):1-11. |
[8] | PALMAL S, JANA N R. Gold nanoclusters with enhanced tunable fluorescence as bioimaging probes[J]. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology, 2014, 6(1):102-110. |
[9] | 杨维涛, 郭伟圣, 张兵波, 等. 基于蛋白和多肽为模板的贵金属纳米簇合成研究[J]. 化学学报, 2014, 72(12):1209-1217. YANG W T, GUO W S, ZHANG B B, et al. Synthesis of noble metal nanoclusters based on protein and peptide as a template[J]. Journal of the Chinese Chemical Society, 2014, 72(12):1209-1217. |
[10] | WANG X, LI Y, ZHONG C. Amyloid-directed assembly of nanostructures and functional devices for bionanoelectronics[J]. Journal of Materials Chemistry B, 2015, 3(25):4953-4958. |
[11] | GOSWAMI N, ZHENG K, XIE J. Bio-NCs the marriage of ultrasmall metal nanoclusters with biomolecules[J]. Nanoscale, 2014, 6(22):13328-13347. |
[12] | MAITY B, FUJITA K, UENO T. Use of the confined spaces of apo-ferritin and virus capsids as nanoreactors for catalytic reactions[J]. Current Opinion in Chemical Biology, 2015, 25(1):88-97. |
[13] | MELDRUM F C, WADE V J, NIMMO D L, et al. Synthesis of inorganic nanophase materials in supramolecular protein cages[J]. Nature, 1991, 349(6311):684-687. |
[14] | KASYUTICH O, ILARI A, FIORILLO A, et al. Silver ion incorporation and nanoparticle formation inside the cavity of pyrococcus furiosus ferritin:structural and size-distribution analyses[J]. Journal of the American Chemical Society, 2010, 132(10):3621-3627. |
[15] | SHIN Y, DOHNALKOVA A, LIN Y. Preparation of homogeneous gold-silver alloy nanoparticles using the apoferritin cavity as a nanoreactor[J]. The Journal of Physical Chemistry C, 2010, 114(13):5985-5989. |
[16] | UENO T, SUZUKI M, GOTO T, et al. Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage[J]. Angewandte Chemie International Edition, 2004, 43(19):2527-2530. |
[17] | FAN R, CHEW S W, CHEONG V V, et al. Fabrication of gold nanoparticles inside unmodified horse spleen apoferritin[J]. Small, 2010, 6(14):1483-1487. |
[18] | ZHANG W, LIU X, WALSH D, et al. Caged-protein-confined bimetallic structural assemblies with mimetic peroxidase activity[J]. Small, 2012, 8(19):2948-2953. |
[19] | XIE J, LEE J Y, DANIEL I C W. Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein[J]. The Journal of Physical Chemistry C, 2007, 111(28):10226-10232. |
[20] | CHEN L, WANG N, WANG X, et al. Protein-directed in situ synthesis of platinum nanoparticles with superior peroxidase-like activity, and their use for photometric determination of hydrogen peroxide[J]. Microchimica Acta, 2013, 180(15/16):1517-1522. |
[21] | SHARMA A K, PANDEY S, KHAN M S, et al. Protein stabilized fluorescent gold nanocubes as selective probe for alkaline phosphatase via inner filter effect[J]. Sensors and Actuators B:Chemical, 2018, 259(1):83-89. |
[22] | CHAKRABORTY I, FELIU N, ROY S, et al. Protein-mediated shape control of silver nanoparticles[J]. Bioconjugate Chemistry, 2018, 29(4):1261-1265. |
[23] | HART C, ABULADEL N, BEE M, et al. Protein-templated gold nanoparticle synthesis:protein organization, controlled gold sequestration, and unexpected reaction products[J]. Dalton Transactions, 2017, 46(47):16465-16473. |
[24] | WILLNER I, BARON R, WILLNERR B. Growing metal nanoparticles by enzymes[J]. Advanced Materials, 2010, 18(9):1109-1120. |
[25] | EBY D M, SCHAEUBLIN N M, FARRINGTON K E, et al. Lysozyme catalyzes the formation of antimicrobial silver nanoparticles[J]. ACS Nano, 2009, 3(4):984-994. |
[26] | SHARMA B, MANDANI S, SARMA T K. Biogenic growth of alloys and core-shell nanostructures using urease as a nanoreactor at ambient conditions[J]. Scientific Reports, 2013, 3(37):2601. |
[27] | ZOU L, QI W, HUANG R, et al. Green synthesis of a gold nanoparticle-nanocluster composite nanostructures using trypsin as linking and reducing agents[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(11):1398-1404. |
[28] | ROTH K L, GENG X, GROVE T Z. Bioinorganic interface:mechanistic studies of protein-directed nanomaterial synthesis[J]. The Journal of Physical Chemistry C, 2016, 120(20):10951-10960. |
[29] | AN D, SU J, WEBER J K, et al. A peptide-coated gold nanocluster exhibits unique behavior in protein activity inhibition[J]. Journal of the American Chemical Society, 2015, 137(26):8412-8418. |
[30] | XIE J, ZHENG Y, YING J Y. Protein-directed synthesis of highly fluorescent gold nanoclusters[J]. Journal of the American Chemical Society, 2009, 131(3):888-889. |
[31] | YU Y, LUO Z, TEO C S, et al. Tailoring the protein conformation to synthesize different-sized gold nanoclusters[J]. Chemical Communications, 2013, 49(84):9740-9742. |
[32] | CHUANG K T, LIN Y W. Microwave-assisted formation of gold nanoclusters capped in bovine serum albumin and exhibiting red or blue emission[J]. The Journal of Physical Chemistry C, 2017, 121(48):26997-27003. |
[33] | XU Y, SHERWOOD J, QIN Y, et al. The role of protein characteristics in the formation and fluorescence of Au nanoclusters[J]. Nanoscale, 2014, 6(3):1515-1524. |
[34] | ZANG J, LI C, ZHOU K, et al. Nanomolar Hg2+ detection using β-lactoglobulin-stabilized fluorescent gold nanoclusters in beverage and biological media[J]. Analytical Chemistry, 2016, 88(20):10275-10283. |
[35] | XAVIER P L, CHAUDHARI K, BAKSI A, et al. Protein-protected luminescent noble metal quantum clusters:an emerging trend in atomic cluster nanoscience[J]. Nano Reviews, 2012, 3(1):19-24. |
[36] | YU Y, NEW S Y, XIE J, et al. Protein-based fluorescent metal nanoclusters for small molecular drug screening[J]. Chemical Communications, 2014, 50(89):13805-13808. |
[37] | KANBAK-AKSU S, NAHID H M, HAGEN W R, et al. Ferritin-supported palladium nanoclusters:selective catalysts for aerobic oxidations in water[J]. Chemical Communications, 2012, 48(46):5745-5747. |
[38] | SUN C, YANG H, YUAN Y, et al. Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging[J]. Journal of the American Chemical Society, 2011, 133(22):8617-8624. |
[39] | KAWASAKI H, HAMAGUCHI K, OSAKA I, et al. pH-dependent synthesis of pepsin-mediated gold nanoclusters with blue freen and red fluorescent emission[J]. Advanced Functional Materials, 2011, 21(18):3508-3515. |
[40] | CHEN T H, TSENG W L. (Lysozyme type Ⅵ)-stabilized Au8 clusters:aynthesis mechanism and application for sensing of glutathione in a single drop of blood[J]. Small, 2012, 8(12):1912-1919. |
[41] | LI Z, PENG H, LIU J, et al. Plant protein-directed synthesis of luminescent gold nanocluster hybrids for tumor imaging[J]. ACS Applied Materials & Interfaces, 2018, 10(1):83-90. |
[42] | MOHANTY J S, XAVIER P L, CHAUDHARI K, et al. Luminescent, bimetallic Au-Ag alloy quantum clusters in protein templates[J]. Nanoscale, 2012, 4(14):4255-4262. |
[43] | ZHAI Q, XING H, ZHANG X, et al. Enhanced electrochemiluminescence behavior of gold-silver bimetallic nanoclusters and its sensing application for mercury(Ⅱ)[J]. Analytical Chemistry, 2017, 89(14):7788-7794. |
[44] | ZHANG N, SI Y, SUN Z, et al. Rapid, selective, and ultrasensitive fluorimetric analysis of mercury and copper levels in blood using bimetallic gold-silver nanoclusters with "silver effect"-enhanced red fluorescence[J]. Analytical Chemistry, 2014, 86(23):11714-11721. |
[45] | ZHOU Q, LIN Y, XU M, et al. Facile synthesis of enhanced fluorescent gold-silver bimetallic nanocluster and its application for highly sensitive detection of inorganic pyrophosphatase activity[J]. Analytical Chemistry, 2016, 88(17):8886-8892. |
[46] | PANG S, LIU S. Lysozyme-stabilized bimetallic gold/silver nanoclusters as a turn-on fluorescent probe for determination of ascorbic acid and acid phosphatase[J]. Analytical Methods, 2017, 9(47):6713-6718. |
[47] | GAO Z, SU R, QI W, et al. Copper nanocluster-based fluorescent sensors for sensitive and selective detection of kojic acid in food stuff[J]. Sensors and Actuators B:Chemical, 2014, 195(1):359-364. |
[48] | GHOSH R, SAHOO A K, GHOSH S S, et al. Blue-emitting copper nanoclusters synthesized in the presence of lysozyme as candidates for cell labeling[J]. ACS Applied Materials & Interfaces, 2014, 6(6):3822-3828. |
[49] | FENG J, CHEN Y, HAN Y, et al. pH-regulated synthesis of trypsin-templated copper nanoclusters with blue and yellow fluorescent emission[J]. ACS Omega, 2017, 2(12):9109-9117. |
[50] | ZETH K, OFFERMANN S, ESSEN L O, et al. Iron-oxo clusters biomineralizing on protein surfaces:structural analysis of halobacterium salinarum DpsA in its low-and high-iron states[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(38):13780. |
[51] | UENO T, ABE S, KOSHIYAMA T, et al. Elucidation of metal-ion accumulation induced by hydrogen bonds on protein surfaces by using porous lysozyme crystals containing Rh(Ⅲ) ions as the model surfaces[J]. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(9):2730. |
[52] | 何乃普, 逯盛芳, 赵伟刚, 等. 基于蛋白质分子自组装体系的构建[J]. 化学进展, 2014, 26(12):303-309. HE N P, LU S F, ZHAO W G, et al. Fabrication of the self-assembly systems based on protein molecules[J]. Progress in Chemistry, 2014, 26(12):303-309. |
[53] | ZHANG L, LI N, GAO F, et al. Insulin amyloid fibrils:an excellent platform for controlled synthesis of ultrathin superlong platinum nanowires with high electrocatalytic activity[J]. Journal of the American Chemical Society, 2012, 134(28):11326-11329. |
[54] | TAO L, GAO Y, WU P, et al. Insulin templated synthesis of single-crystalline silver nanocables with ultrathin Ag cores[J]. RSC Advances, 2015, 5(47):37814-37817. |
[55] | HOU L, NIU Y, WANG Y, et al. Controlled synthesis of Pt-Pd nanoparticle chains with high electrocatalytic activity based on insulin amyloid fibrils[J]. Nano, 2016, 11(6):1650063. |
[56] | ZHOU X, LI R, DAI B, et al. The fabrication and electrical characterization of protein fibril-templated one-dimensional palladium nanostructures[J]. European Polymer Journal, 2013, 49(8):1957-1963. |
[57] | BOLISETTY S, ARCARI M, ADAMCIK J, et al. Hybrid amyloid membranes for continuous flow catalysis[J]. Langmuir, 2015, 31(51):13867-13873. |
[58] | NYSTROM G, FEMANDEZRONCO M P, BOLISETTY S, et al. Amyloid templated gold aerogels[J]. Advanced Materials, 2016, 28(3):472-478. |
[59] | HUANG R, ZHU H, SU R, et al. Catalytic membrane reactor immobilized with alloy nanoparticle-loaded protein fibrils for continuous reduction of 4-nitrophenol[J]. Environmental Science & Technology, 2016, 50(20):11263-11273. |
[60] | JAVED I, SUN Y, ADAMCIK J, et al. Co-fibrillization of pathogenic and functional amyloid proteins with gold nanoparticles against amyloidogenesis[J]. Biomacromolecules, 2017, 18(12):4316-4322. |
[61] | XU Z, LI L, LI H, et al. Synthesis of self-assembled noble metal nanoparticle chains using amyloid fibrils of lysozyme as templates[J]. Nanomaterials and Nanotechnology, 2016, 6(4):1-7. |
[62] | JUAREZ J, CAMBON A, GOYLOPEZ S, et al. Obtention of metallic nanowires by protein biotemplating and their catalytic application[J]. The Journal of Physical Chemistry Letters, 2010, 1(18):2680-2687. |
[63] | TAHERI R A, AKHTARI Y, MOGHADAM T T, et al. Assembly of gold nanorods on HSA amyloid fibrils to develop a conductive nanoscaffold for potential biomedical and biosensing applications[J]. Europe PMC, 2018, 8(1):9333. |
[64] | LEE D, CHOE Y J, CHOI Y S, et al. Photoconductivity of pea-pod-type chains of gold nanoparticles encapsulated within dielectric amyloid protein nanofibrils of a-synuclein[J]. Angewandte Chemie, 2011, 50(6):1332-1337. |
[65] | CHEN C L, ZHANG P, ROSI N L. A new peptide-based method for the design and synthesis of nanoparticle superstructures:construction of highly ordered gold nanoparticle double helices[J]. Journal of the American Chemical Society, 2008, 130(41):13555-13557. |
[66] | SHARMA N, TOP A, KⅡCK K, et al. One-dimensional gold nanoparticle arrays by electrostatically directed organization using polypeptide self-assembly[J]. Angewandte Chemie International Edition, 2009, 48(38):7078-7082. |
[67] | YANG T, ZHANG Y, LI Z. Formation of gold nanoparticle decorated lysozyme microtubes[J]. Biomacromolecules, 2011, 12(6):2027-2031. |
[68] | LARA C, HANDSCHIN S, MEZZENGA R. Towards lysozyme nanotube and 3D hybrid self-assembly[J]. Nanoscale, 2013, 5(16):7197-7201. |
[69] | LARA C, ADAMCIK J, JORDENS S, et al. General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons[J]. Biomacromolecules, 2011, 12(5):1868-1875. |
[70] | FU W C, OPAZO M A, ACUNA S M, et al. New route for self-assembly of α-lactalbumin nanotubes and their use as templates to grow silver nanotubes[J]. Plos One, 2017, 12(4):e0175680. |
[71] | GOTO S, AMANO Y, AKIYAMA M, et al. Gold nanoparticle inclusion into protein nanotube as a layered wall component[J]. Langmuir, 2013, 29(46):14293-14300. |
[72] | CARRENOFUENTES L, PLASCENCIAVILLA G, PALOMARES L A, et al. Modulating the physicochemical and structural properties of gold-functionalized protein nanotubes through thiol surface modification[J]. Langmuir, 2014, 30(49):14991-14998. |
[73] | FALKNER J C, AL-SOMALI A M, JAMISON J A, et al. Generation of size-controlled, submicrometer protein crystals[J]. Chemistry of Materials, 2005, 17(10):2679-2686. |
[74] | TAKAFUMI U. Porous protein crystals as reaction vessels[J]. Chemistry-A European Journal, 2013, 19(28):9096-9102. |
[75] | VILENCHIK L Z, GRIFFITH J P, CLAIR N S, et al. Protein crystals as novel microporous materials[J]. Journal of the American Chemical Society, 1998, 120(18):4290-4294. |
[76] | FALKNER J C, TURNER M E, BOSWORTH J K, et al. Virus crystals as nanocomposite scaffolds[J]. Journal of the American Chemical Society, 2005, 127(15):5274-5275. |
[77] | ABE S, TSUJIMOTO M, YONEDA K, et al. Porous protein crystals as reaction vessels for controlling magnetic properties of nanoparticles[J]. Small, 2012, 8(9):1314-1319. |
[78] | WEI H, WANG Z, ZHANG J, et al. Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme[J]. Nature Nanotechnology, 2011, 6(2):93-97. |
[79] | WEI H, LU Y. Catalysis of gold nanoparticles within lysozyme single crystals[J]. Chemistry-An Asian Journal, 2012, 7(4):680-683. |
[80] | GULI M, LAMBERT E, LI M, et al. Template-directed synthesis of nanoplasmonic arrays by intracrystalline metalization of cross-linked lysozyme crystals[J]. Angewandte Chemie, 2010, 49(3):520-523. |
[81] | MUSKENS O L, ENGLAND M W, DANOS L, et al. Plasmonic response of Ag-and Au-infiltrated cross-linked lysozyme crystals[J]. Advanced Functional Materials, 2013, 23(3):281-290. |
[82] | LIANG M, WANG L, SU R, et al. Synthesis of silver nanoparticles within cross-linked lysozyme crystals as recyclable catalysts for 4-nitrophenol reduction[J]. Catalysis Science & Technology, 2013, 3(8):1910-1914. |
[83] | LIANG M, WANG L, LIU X, et al. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts[J]. Nanotechnology, 2013, 24(24):245601. |
[84] | LIU M, WANG L, HUANG R, et al. Superior catalytic performance of gold nanoparticles within small cross-linked lysozyme crystals[J]. Langmuir, 2016, 32(42):10895-10904. |
[1] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[2] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[3] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[4] | Wenqi HOU, Yan SUN, Xiaoyan DONG. Basification modification of transthyretin significantly enhances inhibitory effect on amyloid-β protein aggregation [J]. CIESC Journal, 2023, 74(5): 2100-2110. |
[5] | Qiuhua ZHANG, Manlu LIU, Zheng WANG, Yiming ZHANG, Haijia SU. Biosynthesis of vitamin K2 and functional analysis of the biosynthetic enzymes involved in its menadione moiety [J]. CIESC Journal, 2023, 74(1): 342-354. |
[6] | Wei LIU, Yan SUN. Research progress on amyloid β-protein aggregation and its regulation [J]. CIESC Journal, 2022, 73(6): 2381-2396. |
[7] | Shan CHENG, Rui LUO, Hong TIAN, Zhenqi WANG, Jingchun HUANG, Yu QIAO. Effect of hydrothermal carbonization temperature on transformation path of organic nitrogen in sludge [J]. CIESC Journal, 2022, 73(11): 5220-5229. |
[8] | HAN Wei, ZHAN Jun, SHI Hong, ZHAO Dong, CAI Shaojun, PENG Xianghong, XIAO Biao, GAO Yu. Synthesis and properties of nitrogen and sulfur codoped graphene quantum dots [J]. CIESC Journal, 2021, 72(S1): 530-538. |
[9] | Nanxing LI, Lin ZHANG. Design of asthma inhibitors targeting Galectin-10 protein [J]. CIESC Journal, 2021, 72(9): 4847-4853. |
[10] | Xiaoxi YU, Zhenzhen YAN, Qihui JIANG, Xia WU, Yuxiao ZHANG, Xiaojuan WANG, Fang HUANG. Study on the effect of 1-octyl-3-methylimidazole bromide aggregation state on protein crystallization [J]. CIESC Journal, 2021, 72(9): 4854-4860. |
[11] | DUAN Lingxuan, YAO Guangxiao, JIANG Liang, WANG Shizhen. Genome mining of organic solvent tolerant amino acid dehydrogenase for biosynthesis of unnatural amino acids in non-aqueous system [J]. CIESC Journal, 2021, 72(7): 3757-3767. |
[12] | CHEN Tingting, HAN Kaixin, CHEN Cuixue, LING Xueping, SHEN Liang, LU Yinghua. Study of iron-reducing bacteria Shewanellaxiamenensis BC01 under organic solvents stress [J]. CIESC Journal, 2021, 72(7): 3747-3756. |
[13] | GAO Zixi, GUO Shuqi, FEI Qiang. Recent progress in microbial bioconversion of greenhouse gases into single cell protein [J]. CIESC Journal, 2021, 72(6): 3202-3214. |
[14] | YUE Hangbo, ZHENG Pingxuan, ZHENG Yuru, KUANG Liuyin, ZHANG Yin, LI Liangjun, GUO Jianwei. Processing, interfaces and properties of cottonseed protein/sisal fiber green composites [J]. CIESC Journal, 2021, 72(3): 1751-1760. |
[15] | HE Pengpeng, ZHAO Song, MAO Chenyue, WANG Zhi, WANG Jixiao. Research progress of solvent-resistant composite nanofiltration membrane [J]. CIESC Journal, 2021, 72(2): 727-747. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||