CIESC Journal ›› 2021, Vol. 72 ›› Issue (6): 3202-3214.DOI: 10.11949/0438-1157.20201458
• Reviews and monographs • Previous Articles Next Articles
GAO Zixi1(),GUO Shuqi1,FEI Qiang1,2()
Received:
2020-10-20
Revised:
2020-11-28
Online:
2021-06-05
Published:
2021-06-05
Contact:
FEI Qiang
通讯作者:
费强
作者简介:
高子熹(1996—),男,博士研究生,基金资助:
CLC Number:
GAO Zixi, GUO Shuqi, FEI Qiang. Recent progress in microbial bioconversion of greenhouse gases into single cell protein[J]. CIESC Journal, 2021, 72(6): 3202-3214.
高子熹, 郭树奇, 费强. 生物转化温室气体生产单细胞蛋白的研究进展[J]. 化工学报, 2021, 72(6): 3202-3214.
Add to citation manager EndNote|Ris|BibTeX
1 | Teixeira L V, Moutinho L F, Romão-Dumaresq A S. Gas fermentation of C1 feedstocks: commercialization status and future prospects[J]. Biofuels, Bioproducts and Biorefining, 2018, 12(6): 1103-1117. |
2 | Kocs E A. The global carbon nation: status of CO2 capture, storage and utilization[C]// 5th Course of the MRS-EMRS “Materials for Energy and Sustainability” and 3rd Course of the “EPS-SIF International School on Energy”. Erice, Italy, 2017: 00002. |
3 | Chai X L, Tonjes D J, Mahajan D. Methane emissions as energy reservoir: context, scope, causes and mitigation strategies[J]. Progress in Energy and Combustion Science, 2016, 56(5): 33-70. |
4 | Halmemies-Beauchet-filleau A, Rinne M, Lamminen M, et al. Review: alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects[J]. Animal, 2018, 12: s295-s309. |
5 | Macdiarmid J I, Whybrow S. Nutrition from a climate change perspective[J]. The Proceedings of the Nutrition Society, 2019, 78(3): 380-387. |
6 | Puyol D, Batstone D J, Hülsen T, et al. Resource recovery from wastewater by biological technologies: opportunities, challenges, and prospects[J]. Frontiers in Microbiology, 2017, 7: 2106. |
7 | Garg S, Wu H, Clomburg J M, et al. Bioconversion of methane to C-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5GB1C[J]. Metabolic Engineering, 2018, 48(4): 175-183. |
8 | 央广网. 巴黎气候大会: 中国为实现低碳承诺做了这些事[EB/OL]. [2020-10-08]. . |
CNR. Climate conference in Paris: things that China has done to fulfill the low-carbon emissions promise[EB/OL]. [2020-10-08]. . | |
9 | Li Q, Chen Z A, Zhang J T, et al. Positioning and revision of CCUS technology development in China[J]. International Journal of Greenhouse Gas Control, 2016, 46(3): 282-293. |
10 | Dineshbabu G, Goswami G, Kumar R, et al. Microalgae-nutritious, sustainable aqua- and animal feed source[J]. Journal of Functional Foods, 2019, 62(11): 103545. |
11 | Maurya R, Paliwal C, Ghosh T, et al. Applications of de-oiled microalgal biomass towards development of sustainable biorefinery[J]. Bioresource Technology, 2016, 214(8): 787-796. |
12 | Chew K W, Yap J Y, Show P L, et al. Microalgae biorefinery: high value products perspectives[J]. Bioresource Technology, 2017, 229(4): 53-62. |
13 | Cesário M T, da Fonseca M M R, Marques M M, et al. Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials[J]. Biotechnology Advances, 2018, 36(3): 798-817. |
14 | Li Y B, Li Y, Wang B Q, et al. The status quo review and suggested policies for shale gas development in China[J]. Renewable and Sustainable Energy Reviews, 2016, 59(6): 420-428. |
15 | Kougias P G, Angelidaki I. Biogas and its opportunities—a review[J]. Frontiers of Environmental Science & Engineering, 2018, 12(3): 14. |
16 | Johnravindar D, Liang B B, Fu R Z, et al. Supplementing granular activated carbon for enhanced methane production in anaerobic co-digestion of post-consumer substrates[J]. Biomass and Bioenergy, 2020, 136(5): 105543. |
17 | Li X S, Xu C G, Zhang Y, et al. Investigation into gas production from natural gas hydrate: a review[J]. Applied Energy, 2016, 172(12): 286-322. |
18 | Kim H J, Huh J, Kwon Y W, et al. Biological conversion of methane to methanol through genetic reassembly of native catalytic domains[J]. Nature Catalysis, 2019, 2(4): 342-353. |
19 | Garg S, Clomburg J M, Gonzalez R. A modular approach for high-flux lactic acid production from methane in an industrial medium using engineered Methylomicrobium buryatense 5GB1[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(6): 379-391. |
20 | Cantera S, Lebrero R, Rodríguez S, et al. Ectoine bio-milking in methanotrophs: a step further towards methane-based bio-refineries into high added-value products[J]. Chemical Engineering Journal, 2017, 328(22): 44-48. |
21 | Fei Q, Puri A W, Smith H, et al. Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense[J]. Biotechnology for Biofuels, 2018, 11(5):129. |
22 | García-Pérez T, López J C, Passos F, et al. Simultaneous methane abatement and PHB production by Methylocystis hirsuta in a novel gas-recycling bubble column bioreactor[J]. Chemical Engineering Journal, 2018, 334: 691-697. |
23 | Dürre P, Eikmanns B J. C1-carbon sources for chemical and fuel production by microbial gas fermentation[J]. Current Opinion in Biotechnology, 2015, 35(6): 63-72. |
24 | 胡礼珍, 王佳, 袁波, 等. 碳一气体生物利用进展[J]. 生物加工过程, 2017, 15(6): 17-25. |
Hu L Z, Wang J, Yuan B, et al. Production of biofuels and chemicals from C1 gases by microorganisms: status and prospects[J]. Chinese Journal of Bioprocess Engineering, 2017, 15(6): 17-25. | |
25 | Khoshnevisan B, Tsapekos P, Zhang Y F, et al. Urban biowaste valorization by coupling anaerobic digestion and single cell protein production[J]. Bioresource Technology, 2019, 290(10): 121743. |
26 | Ranganathan P, Savithri S. Techno-economic analysis of microalgae-based liquid fuels production from wastewater via hydrothermal liquefaction and hydroprocessing[J]. Bioresource Technology, 2019, 284(6): 256-265. |
27 | Ritala A, Häkkinen S T, Toivari M, et al. Single cell protein-state-of-the-art, industrial landscape and patents 2001—2016[J]. Frontiers in Microbiology, 2017, 8: 2009. |
28 | Kim S W, Less J F, Wang L, et al. Meeting global feed protein demand: challenge, opportunity, and strategy[J]. Annual Review of Animal Biosciences, 2019, 7: 221-243. |
29 | Linder T. Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system[J]. Food Security, 2019, 11(2): 265-278. |
30 | Matos  P. The impact of microalgae in food science and technology[J]. Journal of the American Oil Chemists' Society, 2017, 94(11): 1333-1350. |
31 | Becker E W. Micro-algae as a source of protein[J]. Biotechnology Advances, 2007, 25(2): 207-210. |
32 | Øverland M, Tauson A H, Shearer K, et al. Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals[J]. Archives of Animal Nutrition, 2010, 64(3): 171-189. |
33 | Jones S W, Karpol A, Friedman S, et al. Recent advances in single cell protein use as a feed ingredient in aquaculture[J]. Current Opinion in Biotechnology, 2020, 61(1): 189-197. |
34 | Matassa S, Boon N, Pikaar I, et al. Microbial protein: future sustainable food supply route with low environmental footprint[J]. Microbial Biotechnology, 2016, 9(5): 568-575. |
35 | Fei Q, Liang B B, Tao L, et al. Biological valorization of natural gas for the production of lactic acid: techno-economic analysis and life cycle assessment[J]. Biochemical Engineering Journal, 2020, 158(6): 107500. |
36 | Service R F. Cost of carbon capture drops, but does anyone want it?[J]. Science, 2016, 354(6318): 1362-1363. |
37 | Mesters C. A selection of recent advances in C1 chemistry[J]. Annual Review of Chemical and Biomolecular Engineering, 2016, 7: 223-238. |
38 | Fei Q, Guarnieri M T, Tao L, et al. Bioconversion of natural gas to liquid fuel: opportunities and challenges[J]. Biotechnology Advances, 2014, 32(3): 596-614. |
39 | Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy, 2016, 162(2): 1633-1652. |
40 |
Verbeeck K, de Vrieze J, Pikaar I, et al. Assessing the potential for up-cycling recovered resources from anaerobic digestion through microbial protein production[J]. Microbial Biotechnology, 2020, doi:10.1111/1751-7915.13600.
DOI URL |
41 | Sui Y X, Jiang Y, Moretti M, et al. Harvesting time and biomass composition affect the economics of microalgae production[J]. Journal of Cleaner Production, 2020, 259(17): 120782. |
42 | Chen Y, Sun L P, Liu Z H, et al. Integration of waste valorization for sustainable production of chemicals and materials via algal cultivation[J]. Topics in Current Chemistry, 2017, 375(6): 89. |
43 | 崔堂武, 袁波, 凌晨, 等. 木质素降解酶的酶活测试方法的评价与分析[J]. 化工进展, 2020, 39(12): 5189-5202. |
Cui T W, Yuan B, Ling C, et al. Evaluation and analysis of activity assays of ligninolytic enzymes[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5189-5202. | |
44 | Bomgardner M. Calysta raises money for fish food[J]. Chemical & Engineering News, 2017, 95(19): 10. |
45 | Bothe H, Møller Jensen K, Mergel A, et al. Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process[J]. Applied Microbiology and Biotechnology, 2002, 59(1): 33-39. |
46 | Cyanotech. Nutrex Hawaii[EB/OL]. [2020-11-20]. . |
47 | Earthrise. Shop Californian Spirulina[EB/OL]. [2020-11-20]. . |
48 | 康普螺旋藻有限公司. 饲料级螺旋藻粉[EB/OL]. [2020-11-20]. . |
Comp Spirulina Co., Ltd. Feed-grade Spirulina powder[EB/OL]. [2020-11-20]. . | |
49 | 新大泽. 螺旋藻粉[EB/OL]. [2020-11-20]. . |
Dnarmsa King. Spirulina powder[EB/OL]. [2020-11-20]. . | |
50 | ENERGYbits. ENERGYbits® Spirulina[EB/OL]. [2020-11-20]. . |
51 | FEBICO. Biophyto® Premium Chlorella Powder[EB/OL]. [2020-11-20]. . |
52 | Klötze Roquette. Chlorella[EB/OL]. [2020-11-20]. . |
53 | 康普螺旋藻有限公司. 小球藻粉[EB/OL]. [2020-11-20]. . |
Comp Spirulina Co., Ltd. Chlorella powder[EB/OL]. [2020-11-20]. . | |
54 | Euglena Co., Ltd. Green Powder[EB/OL]. [2020-11-20]. . |
55 | Algae Has. Checkout Pot of Green[EB/OL]. [2020-11-20]. . |
56 | 新浪财经. 中国透云举行动土奠基仪式 打造全球首座莱茵衣藻工厂[EB/OL]. [2020-11-20]. . |
Sina Finance. Breaking ground ceremony was held in Touyun, China, where the first plant processing Chlamydomonas reinhardtii would be build[EB/OL]. [2020-11-20]. . | |
57 | Drejer A, Ritschel T, Jørgensen S B, et al. Economic optimizing control for single-cell protein production in a U-loop reactor[C]// Proceedings of the 27th European Symposium on Computer Aided Process Engineering. Barcelona, Spain, 2017: 1759-1764. |
58 | Unibio. Introduction[EB/OL]. [2020-10-08]. . |
59 | Dong T, Fei Q, Genelot M, et al. A novel integrated biorefinery process for diesel fuel blendstock production using lipids from the methanotroph, Methylomicrobium buryatense[J]. Energy Conversion and Management, 2017, 140(10): 62-70. |
60 | Forján E, Navarro F, Cuaresma M, et al. Microalgae: fast-growth sustainable green factories[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(16): 1705-1755. |
61 | Chen J, Wang Y, Benemann J R, et al. Microalgal industry in China: challenges and prospects[J]. Journal of Applied Phycology, 2016, 28(2): 715-725. |
62 | Gamboa-Delgado J, Márquez-Reyes J M. Potential of microbial-derived nutrients for aquaculture development[J]. Reviews in Aquaculture, 2018, 10(1): 224-246. |
63 | 麦克尔 L.舒勒, 费克莱特·卡基. 生物过程工程: 基本概念[M]. 陈涛, 赵学明, 等, 译. 2版. 北京: 化学工业出版社, 2008: 170. |
Shuler M L, Kargi F. Bioprocess Engineering: Basic Concepts[M]. Chen T, Zhao X M, et al., trans. 2nd ed. Beijing: Chemical Industry Press, 2008: 170. | |
64 | Strong P J, Xie S, Clarke W P. Methane as a resource: can the methanotrophs add value?[J]. Environmental Science & Technology, 2015, 49(7): 4001-4018. |
65 | Nunes J J, Aufderheide B, Ramjattan D M, et al. Enhanced production of single cell protein from M. capsulatus (Bath) growing in mixed culture[J]. Journal of Microbiology, Biotechnology and Food Sciences, 2016, 6(3): 894-899. |
66 | Tsapekos P, Khoshnevisan B, Zhu X Y, et al. Methane oxidising bacteria to upcycle effluent streams from anaerobic digestion of municipal biowaste[J]. Journal of Environmental Management, 2019, 251(23): 109590. |
67 | Kalyuzhnaya M G, Eckert C A, Trinh C T. Methane biocatalysis: selecting the right microbe [M]//Biotechnology for Biofuel Production and Optimization. Amsterdam: Elsevier, 2016: 353-383. |
68 |
Kabimoldayev I, Nguyen A D, Yang L, et al. Basics of genome-scale metabolic modeling and applications on C1-utilization[J]. FEMS Microbiology Letters, 2018, 365(20), doi: 10.1093/femsle/fny241.
DOI URL |
69 | Kalyuzhnaya M G, Puri A W, Lidstrom M E. Metabolic engineering in methanotrophic bacteria[J]. Metabolic Engineering, 2015, 29(3): 142-152. |
70 | Pieja A J, Morse M C, Cal A J. Methane to bioproducts: the future of the bioeconomy?[J]. Current Opinion in Chemical Biology, 2017, 41(6): 123-131. |
71 | Clomburg J M, Crumbley A M, Gonzalez R. Industrial biomanufacturing: the future of chemical production[J]. Science, 2017, 355(6320) : aag0804. |
72 | Kyoto Encyclopedia of Genes and Genomes. KEGG pathway maps[DB/OL]. [2020-10-08]. . |
73 | Sun H, Zhao W Y, Mao X M, et al. High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion[J]. Biotechnology for Biofuels, 2018, 11(8):227. |
74 | Baroukh C, Muñoz-Tamayo R, Steyer J P, et al. A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production[J]. Metabolic Engineering, 2015, 30(4): 49-60. |
75 | Tibocha-Bonilla J D, Zuñiga C, Godoy-Silva R D, et al. Advances in metabolic modeling of oleaginous microalgae[J]. Biotechnology for Biofuels, 2018, 11(9): 241. |
76 | Lupatini A L, Colla L M, Canan C, et al. Potential application of microalga Spirulina platensis as a protein source[J]. Journal of the Science of Food and Agriculture, 2017, 97(3): 724-732. |
77 | Benemann J. Microalgae for biofuels and animal feeds[J]. Energies, 2013, 6(11): 5869-5886. |
78 | Davis R, Markham J, Kinchin C, et al. Process design and economics for the production of algal biomass[R]. USA: NREL, 2016. |
79 | Fei Q, Pienkos P T. Bioconversion of methane for value-added products[M]//Sani R K, Rathinam N K. Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels, Value-Added Products, and Usable Power. Cham, Germany: Springer, 2018: 145-162. |
80 | 宋安东, 张炎达, 杨大娇, 等. 合成气厌氧发酵生物反应器的研究进展[J]. 生物加工过程, 2014, 12(6): 96-102. |
Song A D, Zhang Y D, Yang D J, et al. Research progress in bioreactors for anaerobic fermentation of syngas[J]. Chinese Journal of Bioprocess Engineering, 2014, 12(6): 96-102. | |
81 | Vu M T T, Jepsen P M, Jørgensen N O G, et al. Testing the yield of a pilot-scale bubble column photobioreactor for cultivation of the microalga Rhodomonas salina as feed for intensive calanoid copepod cultures[J]. Aquaculture Research, 2019, 50(1): 63-71. |
82 | Litchfield J H. Comparative technical and economic aspects of single-cell protein processes[J]. Advances in Applied Microbiology, 1977, 22: 267-305. |
83 | Mahapatra D M, Chanakya H N, Ramachandra T V. Algae derived single-cell proteins: economic cost analysis and future prospects[M]// Dhillon G S. Protein Byproducts: Transformation from Environmental Burden into Value-Added Products. UK: Academic Press Ltd.-Elsevier Science Ltd., 2016: 275-301. |
84 | Unibio. The protein[EB/OL]. [2020-10-08]. . |
85 | Hu L Z, Yang Y F, Yan X, et al. Molecular mechanism associated with the impact of methane/oxygen gas supply ratios on cell growth of Methylomicrobium buryatense 5GB1 through RNA-seq[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 263. |
86 | Chae S R, Hwang E J, Shin H S. Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor[J]. Bioresource Technology, 2006, 97(2): 322-329. |
87 | Asimakopoulos K, Gavala H N, Skiadas I V. Reactor systems for syngas fermentation processes: a review[J]. Chemical Engineering Journal, 2018, 348(18): 732-744. |
88 | Stone K A, Hilliard M V, He Q P, et al. A mini review on bioreactor configurations and gas transfer enhancements for biochemical methane conversion[J]. Biochemical Engineering Journal, 2017, 128(12): 83-92. |
89 | Kadic E, Heindel T J. An Introduction to Bioreactor Hydrodynamics and Gas-liquid Mass Transfer[M]. Hoboken, NJ, USA:John Wiley & Sons, Inc., 2014: 69. |
90 | Humbird D, Fei Q. Scale-up considerations for biofuels[M]// Eckert C A, Trinh C T. Biotechnology for Biofuel Production and Optimization. Amsterdam: Elsevier, 2016: 513-537. |
91 | Hensirisak P, Parasukulsatid P, Agblevor F A, et al. Scale-up of microbubble dispersion generator for aerobic fermentation[J]. Applied Biochemistry and Biotechnology, 2002, 101(3): 211-227. |
92 | Westbrook A W, Ren X, Moo-Young M, et al. Application of hydrocarbon and perfluorocarbon oxygen vectors to enhance heterologous production of hyaluronic acid in engineered Bacillus subtilis[J]. Biotechnology and Bioengineering, 2018, 115(5): 1239-1252. |
93 | Han B, Su T, Wu H, et al. Paraffin oil as a “methane vector” for rapid and high cell density cultivation of Methylosinus trichosporium OB3b[J]. Applied Microbiology and Biotechnology, 2009, 83(4): 669-677. |
94 | Qi H S, Zhao S M, Fu H, et al. Enhancement of ascomycin production in Streptomyces hygroscopicus var. ascomyceticus by combining resin HP20 addition and metabolic profiling analysis[J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(9): 1365-1374. |
95 | Quijano G, Rocha-Ríos J, Hernández M, et al. Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 1085-1089. |
96 | Humbird D, Davis R, McMillan J D. Aeration costs in stirred-tank and bubble column bioreactors[J]. Biochemical Engineering Journal, 2017, 127(11): 161-166. |
97 | Al Taweel A M, Shah Q, Aufderheide B. Effect of mixing on microorganism growth in loop bioreactors[J]. International Journal of Chemical Engineering, 2012, 2012(15): 1-12. |
98 | Unibio. The U-loop fermentor[EB/OL]. [2020-10-08]. . |
99 | 朱佛代, 杨福胜, 张锋, 等. 甲烷生物转化膜反应器的CFD模拟[J]. 高校化学工程学报, 2019, 33(3): 603-610. |
Zhu F D, Yang F S, Zhang F, et al. CFD simulation of a membrane bioreactor for methane bioconversion[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(3): 603-610. | |
100 | Valverde-Pérez B, Xing W, Zachariae A A, et al. Cultivation of methanotrophic bacteria in a novel bubble-free membrane bioreactor for microbial protein production[J]. Bioresource Technology, 2020, 310: 123388. |
101 | Rizwan M, Mujtaba G, Memon S A, et al. Exploring the potential of microalgae for new biotechnology applications and beyond: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 394-404. |
102 | Meng C, Huang J K, Ye C Y, et al. Comparing the performances of circular ponds with different impellers by CFD simulation and microalgae culture experiments[J]. Bioprocess and Biosystems Engineering, 2015, 38(7): 1347-1363. |
103 | Acién Fernández F G, Fernández Sevilla J M, Molina Grima E. Photobioreactors for the production of microalgae[J]. Reviews in Environmental Science and Bio/Technology, 2013, 12(2): 131-151. |
104 | Jagadevan S, Banerjee A, Banerjee C, et al. Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production[J]. Biotechnology for Biofuels, 2018, 11(6):185. |
105 | Jeon S, Lim J M, Lee H G, et al. Current status and perspectives of genome editing technology for microalgae[J]. Biotechnology for Biofuels, 2017, 10(11):267. |
106 | Mayers J J, Vaiciulyte S, Malmhäll-Bah E, et al. Identifying a marine microalgae with high carbohydrate productivities under stress and potential for efficient flocculation[J]. Algal Research, 2018, 31(4): 430-442. |
107 | Zhu C B, Han D S, Li Y H, et al. Cultivation of aquaculture feed Isochrysis zhangjiangensis in low-cost wave driven floating photobioreactor without aeration device[J]. Bioresource Technology, 2019, 293(12): 122018. |
108 | Chen C Y, Chang Y H, Chang H Y. Outdoor cultivation of Chlorella vulgaris FSP-E in vertical tubular-type photobioreactors for microalgal protein production[J]. Algal Research, 2016, 13(1): 264-270. |
109 | Gao J Y, You F Q. Design and optimization of shale gas energy systems: overview, research challenges, and future directions[J]. Computers & Chemical Engineering, 2017, 106(11): 699-718. |
110 | 王红秋, 乔明, 郑轶丹. 美“页岩气化工”重塑全球化工产业链[J]. 中国石油企业, 2017, 34(3): 73-74. |
Wang H Q, Qiao M, Zheng Y D. The “shale gas chemical industry” of USA reshapes global chemical industry chain [J]. China Petroleum Enterprise, 2017, 34(3): 73-74. | |
111 | 金瑞庭. 当前国际大宗商品价格走势及2020年展望[J]. 中国经贸导刊, 2020, 37(6): 24-25. |
Jin R T. Current international commodity price trends and prospects for 2020 [J]. China Economic & Trade Herald, 2020, 37 (6): 24-25. | |
112 | EIA. Annual energy outlook 2020[DB/OL]. [2020-10-08]. http:eia.gov/outlooks/aeo/. |
113 | Scholwin F, Grope J, Clinkscales A, et al. Biogas for road vehicles: technology brief[R]. United Arab Emirates: IRENA, 2018. |
114 | Chen L H, Frederiksen P, Li X, et al. Review of biogas models and key challenges in the further development in China[C]// 5th International Conference on Advances in Energy Resources and Environment Engineering. Chongqing, China, 2020. |
115 | Bordel S, Rodríguez Y, Hakobyan A, et al. Genome scale metabolic modeling reveals the metabolic potential of three Type II methanotrophs of the genus Methylocystis[J]. Metabolic Engineering, 2019, 54(4): 191-199. |
116 | Tsapekos P, Zhu X Y, Pallis E, et al. Proteinaceous methanotrophs for feed additive using biowaste as carbon and nutrients source[J]. Bioresource Technology, 2020, 313(10): 123646. |
117 | Meruvu H, Wu H, Jiao Z Y, et al. From nature to nurture: essence and methods to isolate robust methanotrophic bacteria[J]. Synthetic and Systems Biotechnology, 2020, 5(3): 173-178. |
118 | EIA. Henry Hub natural gas spot price[DB/OL]. [2020-10-08]. http:eia.gov/dnav/ng/hist/rngwhhdD.htm. |
119 | Venkata Subhash G, Rajvanshi M, Navish Kumar B, et al. Carbon streaming in microalgae: extraction and analysis methods for high value compounds[J]. Bioresource Technology, 2017, 244: 1304-1316. |
120 | Qi M, Yao C H, Sun B H, et al. Application of an in situ CO2: bicarbonate system under nitrogen depletion to improve photosynthetic biomass and starch production and regulate amylose accumulation in a marine green microalga Tetraselmis subcordiformis[J]. Biotechnology for Biofuels, 2019, 12(1): 184. |
121 | Hanifzadeh M, Sarrafzadeh M H, Nabati Z, et al. Technical, economic and energy assessment of an alternative strategy for mass production of biomass and lipid from microalgae[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 866-873. |
122 | 张晨鼎. 2017年国外纯碱工业发展概况与趋势[J]. 纯碱工业, 2018, 56 (6): 3-7. |
Zhang C D. Development and trends on soda industry in foreign countries[J]. Soda Industry, 2018, 56 (6): 3-7. | |
123 | Molitor H R, Moore E J, Schnoor J L. Maximum CO2 utilization by nutritious microalgae[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9474-9479. |
124 | Williams P J L B, Laurens L M L. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics[J]. Energy & Environmental Science, 2010, 3(5): 554-590. |
125 | Hoffman J, Pate R C, Drennen T, et al. Techno-economic assessment of open microalgae production systems[J]. Algal Research, 2017, 23(4): 51-57. |
126 | Pavlik D, Zhong Y K, Daiek C, et al. Microalgae cultivation for carbon dioxide sequestration and protein production using a high-efficiency photobioreactor system[J]. Algal Research, 2017, 25(7): 413-420. |
127 | Gerber L N, Tester J W, Beal C M, et al. Target cultivation and financing parameters for sustainable production of fuel and feed from microalgae[J]. Environmental Science & Technology, 2016, 50(7): 3333-3341. |
128 | Penloglou G, Chatzidoukas C, Kiparissides C. A microalgae-based biorefinery plant for the production of valuable biochemicals: design and economics[C]// 26th European Symposium on Computer Aided Process Engineering. Portoroz, Slovenia, 1731-1736. |
129 | Banerjee S, Ramaswamy S. Dynamic process model and economic analysis of microalgae cultivation in flat panel photobioreactors[J]. Algal Research, 2019, 39(5): 101445. |
130 | Rezvani S, Kennedy C, Moheimani N R. Techno-economic study of multi-product resource scenarios for Pleurochrysis carterae grown in open ponds in Western Australia[J]. Algal Research, 2019, 39(5): 101456. |
131 |
Mohammady N G E, El-Khatib K M, El-Galad M I, et al. Preliminary study on the economic assessment of culturing Nannochloropsis sp. in Egypt for the production of biodiesel and high-value biochemicals[J]. Biomass Conversion and Biorefinery, 2020, 10(2), doi:10.1007/s13399-020-00878-9.
DOI URL |
132 | Manganaro J L, Lawal A, Goodall B. Techno-economics of microalgae production and conversion to refinery-ready oil with co-product credits[J]. Biofuels, Bioproducts and Biorefining, 2015, 9(6): 760-777. |
133 | Lum K K, Kim J, Lei X G. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed[J]. Journal of Animal Science and Biotechnology, 2013, 4(1): 53. |
134 | Valiorgue P, Ben Hadid H, El Hajem M, et al. CO2 mass transfer and conversion to biomass in a horizontal gas-liquid photobioreactor[J]. Chemical Engineering Research and Design, 2014, 92(10): 1891-1897. |
135 | Kadam K L. Power plant flue gas as a source of CO2 for microalgae cultivation: economic impact of different process options[J]. Energy Conversion and Management, 1997, 38: S505-S510. |
136 | Vidyashankar S, VenuGopal K S, Chauhan V S, et al. Characterisation of defatted Scenedesmus dimorphus algal biomass as animal feed[J]. Journal of Applied Phycology, 2015, 27(5): 1871-1879. |
137 | Soto-Sierra L, Kulkarni S, Woodard S L, et al. Processing of permeabilized Chlorella vulgaris biomass into lutein and protein-rich products[J]. Journal of Applied Phycology, 2020, 32(3): 1697-1707. |
138 | Chua E T, Schenk P M. A biorefinery for Nannochloropsis: induction, harvesting, and extraction of EPA-rich oil and high-value protein[J]. Bioresource Technology, 2017, 244: 1416-1424. |
139 | Pikaar I, de Vrieze J, Rabaey K, et al. Carbon emission avoidance and capture by producing in-reactor microbial biomass based food, feed and slow release fertilizer: potentials and limitations[J]. Science of the Total Environment, 2018, 644(23): 1525-1530. |
140 | Duffy P B, Field C B, Diffenbaugh N S, et al. Strengthened scientific support for the endangerment finding for atmospheric greenhouse gases[J]. Science, 2019, 363(6427): eaat5982. |
141 | Petersen L A H, Villadsen J, Jørgensen S B, et al. Mixing and mass transfer in a pilot scale U-loop bioreactor[J]. Biotechnology and Bioengineering, 2017, 114(2): 344-354. |
142 | Zechter R, Kossoy A, Oppermann K, et al. State and trends of carbon pricing 2017[R]. USA: World-Bank-Group, 2017. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[5] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[6] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[7] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[8] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[9] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[10] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[11] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[12] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[13] | Han HU, Liang YANG, Chunxiao LI, Daoping LIU. Kinetics of methane storage in the natural tobacco leaching filtrate in the hydrate form [J]. CIESC Journal, 2023, 74(3): 1313-1321. |
[14] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[15] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||