CIESC Journal ›› 2018, Vol. 69 ›› Issue (11): 4663-4674.DOI: 10.11949/j.issn.0438-1157.20180706

Previous Articles     Next Articles

Swirling flow enhanced hollow fiber membrane module structure optimization and shell-side hydrodynamics investigation

ZHANG Ting, LI Chuanxi, GUO Kai, ZHANG Huishu, FENG Aiguo, LIU Chunjiang   

  1. State Key Laboratory of Chemical Engineering;School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2018-07-02 Revised:2018-09-18 Online:2018-11-05 Published:2018-11-05
  • Supported by:

    supported by the National High Technology Research and Development Program of China (2015BAC04B01).

旋流强化中空纤维膜组件结构优化及壳程流动研究

张婷, 李传玺, 郭凯, 张会书, 冯爱国, 刘春江   

  1. 化学工程联合国家重点实验室, 天津大学化工学院, 天津 300072
  • 通讯作者: 刘春江
  • 基金资助:

    国家高技术研究发展计划项目(2015BAC04B01)。

Abstract:

A hydrodynamic model of membrane assembly strengthened by rotating flow is proposed and optimized. The Box-Behnken method is used for multi-parameters experimental design with parameters of inlet diameter, inlet length, shell tube height, inlet/outlet and tube height, inlet-outlet tube horizontal inclined angle θ, inlet-outlet and ring protuberance radian, the membrane module design schematic is obtained by optimized response variants. By coupling the Reynolds stress turbulence model (RSM) with the discrete phase model based on the Euler-Lagrangian discrete phase model (DPM), the residence time distribution and the fluid mechanical properties of the liquid-solid two-phase flow in the three-dimensional model were simulated. The simulation results show that the shell-side velocity distribution of the optimized membrane module is more uniform, the turbulent flow dissipation rate is lower, and the shear stress distribution and vorticity distribution are different from the traditional membrane modules. The experimental results confirm that the optimized membrane module has higher water yield, lower pressure drop and lower membrane fouling rate.

Key words: computational fluid dynamics, optimization, filtration, Box-Behnken method, fouling

摘要:

提出并优化了一种旋转流强化的膜组件水力学模型。Box-Behnken方法用于进口直径、进口长度、膜壳高度、进/出口端管长度、球突结构直径,进出口倾斜角度的多参数的实验设计,获得了响应变量最优的膜组件设计方案。通过雷诺应力RSM湍流模型与基于Euler-Lagrange算法的离散相DPM模型的耦合计算,模拟研究了三维模型内液固两相流的颗粒停留时间分布、流体力学特征。模拟结果显示,旋流强化的膜组件壳程的速度分布更加均匀,膜面剪切应力高;湍流耗散率、涡量分布不同于传统膜组件。实验结果证实,优化后的膜组件具有高产水量、低压力降,膜污染速率低的特点。

关键词: 计算流体力学, 优化, 过滤, Box-Behnken方法, 结垢

CLC Number: