[1] |
BARREIRO D L, PRINS W, RONSSE F, et al. Hydrothermal liquefaction (HTL) of microalgae for biofuel production:state of the art review and future prospects[J]. Biomass & Bioenergy, 2013, 53(16):113-127.
|
[2] |
CHAKINALA A G, BRILMAN D W, SWAAIJ W P, et al. Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol[J]. Industrial & Engineering Chemistry Research, 2010, 49(3):1113-1122.
|
[3] |
PARMAR A, SINGH N K, PANDEY A, et al. Cyanobacteria and microalgae:a positive prospect for biofuels[J]. Bioresource Technology, 2011, 102(22):10163-72.
|
[4] |
ALBA L G, TORRI C, FABBRI D, et al. Microalgae growth on the aqueous phase from hydrothermal liquefaction of the same microalgae[J]. Chemical Engineering Journal, 2013, 228(14):214-223.
|
[5] |
GNANSOUNOU E, RAMAN J K. Life cycle assessment of algae biodiesel and its co-products[J]. Applied Energy, 2016, 161(3):300-308.
|
[6] |
ZHAO X, ZHOU H, VINEET S S, et al. Biomass-based chemical looping technologies:the good, the bad and the future[J]. Energy & Environmental Science, 2017, 10(9):1865-2046.
|
[7] |
MURPHY F, DEVLIN G, DEVERELL R, et al. Biofuel production in Ireland-an approach to 2020 targets with a focus on algal biomass[J]. Energies, 2013, 6(12):6391-6412.
|
[8] |
AZIZ M, ODA T, KASHIWAGI T. Advanced energy harvesting from macroalgae-innovative integration of drying, gasification and combined cycle[J]. Energies, 2014, 7(12):8217-8235.
|
[9] |
THIRUVENKADAM S, IZHAR S, YOSHIDA H, et al. Process application of Subcritical Water Extraction (SWE) for algal bio-products and biofuels production[J]. Applied Energy, 2015, 154(15):815-828.
|
[10] |
ADANEZ J, ABAD A, GARCIA F, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy & Combustion Science, 2013, 38(2):215-282.
|
[11] |
KOBAYASHI N, FAN L S. Biomass direct chemical looping process:a perspective[J]. Biomass & Bioenergy, 2011, 35(3):1252-1262.
|
[12] |
ELLIOTT D C. Catalytic hydrothermal gasification of biomass[J]. Biofuels Bioproducts & Biorefining, 2010, 2(3):254-265.
|
[13] |
LI K, RONG Z, BI J. Experimental study on syngas production by co-gasification of coal and biomass in a fluidized bed[J]. Journal of Fuel Chemistry & Technology, 2010, 35(7):2722-2726.
|
[14] |
LEION H, MATTISSON T, LYNGFELT A. Solid fuels in chemical-looping combustion[J]. International Journal of Greenhouse Gas Control, 2008, 2(2):180-193.
|
[15] |
李伟东, 李伟锋, 刘海峰, 等. 蓝藻与神府煤共成浆性的研究[J]. 燃料化学学报, 2010, 37(5):534-538. LI W D, LI W F, LIU H F, et al. Co-slurry ability of blue-green algae and Shenfu coal[J]. Journal of Fuel Chemistry and Technology, 2010, 37(5):534-538.
|
[16] |
钱亚平, 李伟锋, 陈雪莉, 等. 煤和蓝藻的共热解特性研究[J]. 华东理工大学学报(自然科学版), 2013, 39(1):35-41. QIAN Y P, LI W F, CHEN X L, et al. Co-pyrolysis of coal and algae[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2013, 39(1):35-41.
|
[17] |
叶英, 武建军, 周国莉, 等. 提质褐煤煤粉粘结剂成型特性研究[J]. 选煤技术, 2014, 10(5):14-18. YE Y, WU J J, ZHOU G L, et al. Study on molding characteristic of binder of upgraded fine lignite[J]. Coal Preparation Technology, 2014, 10(5):14-18.
|
[18] |
罗苏鹏. 滇池蓝藻的热化学转化试验研究[D]. 昆明:昆明理工大学, 2011. LUO S P. Experimental study on thermochemical transformation of Dianchi cyanobacteria[D]. Kunming:Kunming University of Science and Technology, 2011.
|
[19] |
ROSS A B, JONES J M, KUBACKI M L, et al. Classification of macroalgae as fuel and its thermochemical behaviour[J]. Bioresource Technology, 2008, 99(14):6494-6504.
|
[20] |
黄永福. 普通小球藻和盐生杜氏藻的快速热解特性研究[D]. 武汉:华中科技大学, 2013. HUANG Y F. Research on fast pyrolysis characteristics of Chlorella vulgaris and Dunaliella salina[D]. Wuhan:Huazhong University of Science & Technology, 2013.
|
[21] |
杨瑞丽, 陈宇, 吴玉龙, 等. 煤与杜氏盐藻共热解过程分析及动力学研究[J]. 燃烧科学与技术, 2013, 19(3):281-286. YANG R L, CHEN Y, WU Y L, et al. Study on the process analysis and kinetics during the co-pyrolysis of coal and Dunaliella tertiolecta[J]. Journal of Combustion Science and Technology, 2013, 19(3):281-286.
|
[22] |
DAVIS T A, VOLESKY B, MUCCI A. A review of the biochemistry of heavy metal biosorption by brown algae[J]. Water Research, 2003, 37(18):4311-30.
|
[23] |
LIU Q, WANG S, ZHENG Y, et al. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J]. Journal of Analytical & Applied Pyrolysis, 2008, 82(1):170-177.
|
[24] |
HEEK K H, HODEK W. Structure and pyrolysis behaviour of different coals and relevant model substances[J]. Fuel, 1994, 73(6):886-896.
|
[25] |
WANG Q, ZHAO W, LIU H, et al. Interactions and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion[J]. Applied Energy, 2011, 88(6):2080-2087.
|
[26] |
IDRIS S S, RAHMAN N A, ISMAIL K, et al. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA)[J]. Bioresource Technology, 2010, 101(12):4584-4592.
|
[27] |
BIAGINI E, LIPPI F, PETARCA L, et al. Devolatilisation rate of biomasses and coal-biomass blends:an experimental investigation[J]. Fuel, 2002, 81(8):1041-1050.
|
[28] |
Molina A, MONDRAGON F. Reactivity of coal gasification with steam and CO2[J]. Fuel, 1998, 77(15):1831-1839.
|
[29] |
林荣英, 张济宇. 低活性无烟煤二氧化碳催化气化动力学——热天平等温热重法[J]. 化工学报, 2005, 56(12):2332-2341. Lin R Y, Zhang J Y. Catalytic gasification kinetics of low activity anthracites with carbon dioxide-Isothermal thermo-gravimetric analysis[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(12):2332-2341.
|
[30] |
Marcilla A, Gomez A, Gomis C, et al. Characterization of microalgal species through TGA/FTIR analysis:application to Nannochloropsis sp.[J]. Thermochimica Acta, 2009, 484(1/2):41-47.
|
[31] |
付鹏, 胡松, 孙路石, 等. 稻草和玉米秆热解气体产物的释放特性及形成机理[J]. 中国电机工程学报, 2009, 29(2):113-118. FU P, HU S, SUN L S, et al. Release characteristics and formation mechanism of gas products during rice straw and maize stalk pyrolysis[J]. Proceedings of the CSEE, 2009, 29(2):113-118.
|