[1] |
WANG Z G, WANG Y, ZHANG J Q, et al. Overview of the key technologies of combined cycle engine precooling systems and the advanced applications of micro-channel heat transfer[J]. Aerosp. Sci. Technol., 2014, 39:31-39.
|
[2] |
HENDRICK P, HEINTZ N, BIZZARRI D. Air-hydrogen heat exchangers for advanced space launchers[J]. J. Propuls. Power, 2009, 25:1211-1219.
|
[3] |
VARVILL R. Heat exchanger development at Reaction Engines Ltd.[J]. Acta Astronaut., 2010, 66:1468-1474.
|
[4] |
GASCOIN N, GILLARD P, BERNARD S, et al. Characterisation of coking activity during supercritical hydrocarbon pyrolysis[J]. Fuel Processing Technology, 2008, 89:1416-1428.
|
[5] |
XU K, MENG H. Numerical study of fluid flows and heat transfer of aviation kerosene with consideration of fuel pyrolysis and surface coking at supercritical pressures[J]. Int. J. Heat Mass Transf., 2016, 95:806-814.
|
[6] |
XU K, MENG H. Modeling and simulation of supercritical-pressure turbulent heat transfer of aviation kerosene with detailed pyrolytic chemical reactions[J]. Energy Fuels, 2015, 29:4137-4149.
|
[7] |
RUAN B, MENG H, YANG V. Simplification of pyrolytic reaction mechanism and turbulent heat transfer of n-decane at supercritical pressures[J]. Int. J. Heat Mass Transf., 2014, 69(2):455-463.
|
[8] |
ZHANG C, XU G, GAO L, et al. Experimental investigation on heat transfer of a specific fuel (RP-3) flows through downward tubes at supercritical pressure[J]. J. Supercrit. Fluids, 2012, 72(9):90-99.
|
[9] |
JIANG H, ERVIN J, WEST Z, et al. Turbulent flow, heat transfer deterioration, and thermal oxidation of jet fuel[J]. J. Thermophys. Heat Transf., 2013, 27(4):668-678.
|
[10] |
DANG G, ZHONG F, ZHANG Y, et al. Numerical study of heat transfer deterioration of turbulent supercritical kerosene flow in heated circular tube[J]. Int. J. Heat Mass Transf., 2015, 85:1003-1011.
|
[11] |
LIU B, ZHU Y, YAN J J, et al. Experimental investigation of convection heat transfer of n-decane at supercritical pressures in small vertical tubes[J]. Int. J. Heat Mass Transf., 2015, 91:734-746.
|
[12] |
ZHANG S, FENG Y, JIANG Y, et al. Thermal behavior in the cracking reaction zone of scramjet cooling channels at different channel aspect ratios[J]. J. Propul. Power, 2016, 127:41-56.
|
[13] |
ZHU Y, LIU B, JIANG P. Experimental and numerical investigations on n-decane thermal cracking at supercritical pressures in a vertical tube[J]. Energy Fuels, 2013, 28(1):466-474.
|
[14] |
WARD T A, ZABARNICK S, ERVIN J S, et al. Simulations of flowing mildly-cracked normal alkanes incorporating proportional product distributions[J]. J. Propul. Power, 2004, 20(3):394-402.
|
[15] |
WARD T A, ERVIN J S, ZABARNICK S, et al. Pressure effects on flowing mildly-cracked n-decane[J]. J. Propul. Power, 2005, 21(2):344-355.
|
[16] |
XU J, YANG C, ZHANG W, et al. Turbulent convective heat transfer of CO2, in a helical tube at near-critical pressure[J]. Int. J. Heat Mass Transf., 2015, 80:748-758.
|
[17] |
LI L J, LIN C X, EBADIAN M A. Turbulent heat transfer to near-critical water in a heated curved pipe under the conditions of mixed convection[J]. Int. J. Heat Mass Transf., 1999, 42(16):3147-3158.
|
[18] |
ZHAO H J, LI X W, WU X X. Numerical investigation of supercritical water turbulent flow and heat transfer characteristics in vertical helical tubes[J]. J. Supercrit. Fluids, 2017, 127:48-61.
|
[19] |
WEN J, HUANG H, FU Y, et al. Heat transfer performance of aviation kerosene RP-3 flowing in a vertical helical tube at supercritical pressure[J]. Appl. Therm. Eng., 2017, 121:853-862.
|
[20] |
FU Y, WEN J, TAO Z, et al. Surface coking deposition influences on flow and heat transfer of supercritical hydrocarbon fuel in helical tubes[J]. Exp. Therm. Fluid Sci., 2017, 85:257-265.
|
[21] |
FU Y, XU G, WEN J, et al. Thermal oxidation coking of aviation kerosene RP-3 at supercritical pressure in helical tubes[J]. Appl. Therm. Eng., 2017, 128:1186-1195.
|
[22] |
XU K, SUN X, MENG H. Conjugate heat transfer, endothermic fuel pyrolysis and surface coking of aviation kerosene in ribbed tube at supercritical pressure[J]. Int. J. Therm. Sci., 2018, 132:209-218.
|
[23] |
XU K, MENG H. Analyses of surrogate models for calculating thermophysical properties of aviation kerosene RP-3 at supercritical pressures[J]. Sci. China:Technol. Sci., 2015, 58(3):510-518.
|
[24] |
SUN X, XU K, MENG H, et al. Buoyancy effects on supercritical-pressure conjugate heat transfer of aviation kerosene in horizontal tubes[J]. J. Supercrit. Fluids, 2018, 139:105-113.
|
[25] |
FLUENT User's Guide:Release 6.1[M]. Lebanon:FLUENT Inc., 2001.
|
[26] |
XU K, RUAN B, MENG H. Validation and analyses of RANS CFD models for turbulent heat transfer of hydrocarbon fuels at supercritical pressures[J]. Int. J. Therm. Sci., 2018,124:212-226.
|
[27] |
WANG X, YANG V. Supercritical mixing and combustion of liquid-oxygen/kerosene bi-swirl injector[J]. J. Propul. Power, 2017, 33:316-322.
|
[28] |
MENG H, YANG V. A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme[J]. J. Comput. Phys., 2003, 189(1):277-304.
|
[29] |
MENG H, HSIAO G C, YANG V, et al. Transport and dynamics of liquid oxygen droplets in supercritical hydrogen streams[J]. J. Fluid Mech., 2005, 527:115-139.
|
[30] |
HUANG D, WANG Q, MENG H. Modeling of supercritical-pressure turbulent combustion of hydrocarbon fuels using a modified flamelet-progress-variable approach[J]. Appl. Therm. Eng., 2017, 119:472-480.
|