[1] |
向铮, 刘希玉, 肖丁丁. 我国能源可持续发展现状初步评价及指标应用[J]. 山东社会科学, 2016, (2):168-173. XIANG Z, LIU X Y, XIAO D D. Preliminary evaluation and application of indicators for sustainable development of energy in China[J]. Shandong Social Sciences, 2016, (2):168-173.
|
[2] |
房丛丛, 钱焕群. 相变蓄热技术及其应用[J]. 节能, 2011, 30(Z2):27-30. FANG C C, QIAN H Q. Phase change thermal storage technology and its application[J]. Energy Conservation, 2011, 30(Z2):27-30.
|
[3] |
胡志培. 基于相变材料熔化特性的蓄热装置强化传热研究[D]. 西安:西安建筑科技大学, 2015. HU Z P. Melting characteristic-based study on melting heat transfer enhancement of the traditional thermal storage units[D]. Xi'an:Xi'an University of Architecture and Technology, 2015.
|
[4] |
KUZNIK F, DAVID D, JOHANNES K, et al. A review on phase change materials integrated in building walls[J]. Renewable & Sustainable Energy Reviews, 2011, 15(1):379-391.
|
[5] |
LING T C, POON C S. Use of phase change materials for thermal energy storage in concrete:an overview[J]. Construction & Building Materials, 2013, 46(8):55-62.
|
[6] |
RATHOD M K, BANERJEE J. Thermal stability of phase change materials used in latent heat energy storage systems:a review[J]. Renewable & Sustainable Energy Reviews, 2013, 18(2):246-258.
|
[7] |
孟锋, 安青松, 郭孝峰, 等. 蓄热过程强化技术的应用研究进展[J].化工进展, 2016, 35(5):1273-1282. MENG F, AN Q S, GUO X F, et al. A review of process intensification technology in thermal energy storage[J]. Chemical Industry & Engineering Progress, 2016, 35(5):1273-1282.
|
[8] |
XIAO X, ZHANG P, LI M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage[J]. International Journal of Thermal Sciences, 2014, 81(1):94-105.
|
[9] |
FLEMING E, WEN S, LI S, et al. Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit[J]. International Journal of Heat & Mass Transfer, 2015, 82:273-281.
|
[10] |
ZHANG P, XIAO X, MENG Z N, et al. Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement[J]. Applied Energy, 2015, 137:758-772.
|
[11] |
ZHAO C Y, WU Z G. Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite[J]. Solar Energy Materials & Solar Cells, 2011, 95(2):636-643.
|
[12] |
TAO Y B, YOU Y, HE Y L. Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material[J]. Applied Thermal Engineering, 2016, 93:476-485.
|
[13] |
LI W Q, QU Z G, HE Y L, et al. Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin[J]. Applied Thermal Engineering, 2012, 37(2):1-9.
|
[14] |
SIAHPUSH A, O'BRIEN J, CREPEAU J. Phase change heat transfer enhancement using copper porous foam[J]. Journal of Heat Transfer, 2008, 130(8):318-323.
|
[15] |
唐小梅, 于航. 使用泡沫铜增强相变材料换热性能的实验研究[J]. 建筑节能, 2012, (3):50-54. TANG X M, YU H. Experiment research on enhancing the heat transfer performance of phase change material by cooper foam material[J]. Building Energy Efficiency, 2012, (3):50-54.
|
[16] |
MARTINELLI M, BENTIVOGLIO F, CARON-SOUPART A, et al. Experimental study of a phase change thermal energy storage with copper foam[J]. Applied Thermal Engineering, 2016, 101:247-261.
|
[17] |
CUI H T. Experimental investigation on the heat charging process by paraffin filled with high porosity copper foam[J]. Applied Thermal Engineering, 2012, 39(39):26-28.
|
[18] |
王增义, 刘中良, 马重芳. 热管式相变蓄热换热器储/放能过程中传热特性的实验研究[J]. 工程热物理学报, 2005, 26(6):989-991. WANG Z Y, LIU Z L, MA C F. Experimental study on heat transfer characteristics of the process of charging/discharging of a heat pipe heat exchanger with latent heat storage[J]. Journal of Engineering Thermophysics, 2005, 26(6):989-991.
|
[19] |
HORBANIUC B, POPESCU A, DUMITRA?CU G. The correlation between the number of fins and the discharge time for a finned heat pipe latent heat storage system[J]. Renewable Energy, 1996, 9(s 1/2/3/4):605-608.
|
[20] |
KHALIFA A, TAN L, MAHONY D, et al. Numerical analysis of latent heat thermal energy storage using miniature heat pipes:a potential thermal enhancement for CSP plant development[J]. Applied Thermal Engineering, 2016, 108:93-103.
|
[21] |
ROBAK C W, BERGMAN T L, FAGHRI A. Enhancement of latent heat energy storage using embedded heat pipes[J]. International Journal of Heat & Mass Transfer, 2011, 54(15):3476-3484.
|
[22] |
NITHYANANDAM K, PITCHUMANI R. Thermal energy storage with heat transfer augmentation using thermosyphons[J]. International Journal of Heat & Mass Transfer, 2013, 67(2):281-294.
|
[23] |
NITHYANANDAM K, PITCHUMANI R. Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power[J]. Applied Energy, 2013, 103(1):400-415.
|
[24] |
TIARI S, QIU S. Three-dimensional simulation of high temperature latent heat thermal energy storage system assisted by finned heat pipes[J]. Energy Conversion & Management, 2015, 105:260-271.
|
[25] |
TIARI S, QIU S, MAHDAVI M. Discharging process of a finned heat pipe-assisted thermal energy storage system with high temperature phase change material[J]. Energy Conversion & Management, 2016, 118:426-437.
|
[26] |
JUNG E G, BOO J H. Thermal analytical model of latent thermal storage with heat pipe heat exchanger for concentrated solar power[J]. Solar Energy, 2014, 102(4):318-332.
|
[27] |
LIU Z, WANG Z, MA C. An experimental study on heat transfer characteristics of heat pipe heat exchanger with latent heat storage(I):Charging only and discharging only modes[J]. Energy Conversion & Management, 2006, 47(7/8):944-966.
|
[28] |
LIU Z, WANG Z, MA C. An experimental study on the heat transfer characteristics of a heat pipe heat exchanger with latent heat storage (Ⅱ):Simultaneous charging/discharging modes[J]. Energy Conversion & Management, 2006, 47(7/8):967-991.
|
[29] |
ZHAO Y H, ZHANG K R, DIAO Y H. Heat pipe with micro-pore tubes array and making method thereof and heat exchanging system:US20110203777[P]. 2011.
|
[30] |
LI F F, DIAO Y H, ZHAO Y H, et al. Experimental study on the thermal performance of a new type of thermal energy storage based on flat micro-heat pipe array[J]. Energy Conversion & Management, 2016, 112:395-403.
|