CIESC Journal ›› 2018, Vol. 69 ›› Issue (S1): 34-42.DOI: 10.11949/j.issn.0438-1157.20180778
Previous Articles Next Articles
LIANG Lin, DIAO Yanhua, KANG Yameng, ZHAO Yaohua, WEI Xiangqian, CHEN Chuanqi
Received:
2018-07-10
Revised:
2018-07-18
Online:
2018-09-30
Published:
2018-09-30
Supported by:
supported by the Natural Science Foundation of Beijing (3182038).
梁林, 刁彦华, 康亚盟, 赵耀华, 魏向前, 陈传奇
通讯作者:
刁彦华,E-mail:diaoyanhua@bjut.edu.cn
基金资助:
北京市自然科学基金项目(3182038)。
CLC Number:
LIANG Lin, DIAO Yanhua, KANG Yameng, ZHAO Yaohua, WEI Xiangqian, CHEN Chuanqi. Characteristic of latent heat thermal energy storage strengthened by flat micro heat pipe array-copper foam composite structure[J]. CIESC Journal, 2018, 69(S1): 34-42.
梁林, 刁彦华, 康亚盟, 赵耀华, 魏向前, 陈传奇. 平板微热管阵列-泡沫铜复合结构相变蓄热装置蓄放热特性[J]. 化工学报, 2018, 69(S1): 34-42.
[1] | 向铮, 刘希玉, 肖丁丁. 我国能源可持续发展现状初步评价及指标应用[J]. 山东社会科学, 2016, (2):168-173. XIANG Z, LIU X Y, XIAO D D. Preliminary evaluation and application of indicators for sustainable development of energy in China[J]. Shandong Social Sciences, 2016, (2):168-173. |
[2] | 房丛丛, 钱焕群. 相变蓄热技术及其应用[J]. 节能, 2011, 30(Z2):27-30. FANG C C, QIAN H Q. Phase change thermal storage technology and its application[J]. Energy Conservation, 2011, 30(Z2):27-30. |
[3] | 胡志培. 基于相变材料熔化特性的蓄热装置强化传热研究[D]. 西安:西安建筑科技大学, 2015. HU Z P. Melting characteristic-based study on melting heat transfer enhancement of the traditional thermal storage units[D]. Xi'an:Xi'an University of Architecture and Technology, 2015. |
[4] | KUZNIK F, DAVID D, JOHANNES K, et al. A review on phase change materials integrated in building walls[J]. Renewable & Sustainable Energy Reviews, 2011, 15(1):379-391. |
[5] | LING T C, POON C S. Use of phase change materials for thermal energy storage in concrete:an overview[J]. Construction & Building Materials, 2013, 46(8):55-62. |
[6] | RATHOD M K, BANERJEE J. Thermal stability of phase change materials used in latent heat energy storage systems:a review[J]. Renewable & Sustainable Energy Reviews, 2013, 18(2):246-258. |
[7] | 孟锋, 安青松, 郭孝峰, 等. 蓄热过程强化技术的应用研究进展[J].化工进展, 2016, 35(5):1273-1282. MENG F, AN Q S, GUO X F, et al. A review of process intensification technology in thermal energy storage[J]. Chemical Industry & Engineering Progress, 2016, 35(5):1273-1282. |
[8] | XIAO X, ZHANG P, LI M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage[J]. International Journal of Thermal Sciences, 2014, 81(1):94-105. |
[9] | FLEMING E, WEN S, LI S, et al. Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit[J]. International Journal of Heat & Mass Transfer, 2015, 82:273-281. |
[10] | ZHANG P, XIAO X, MENG Z N, et al. Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement[J]. Applied Energy, 2015, 137:758-772. |
[11] | ZHAO C Y, WU Z G. Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite[J]. Solar Energy Materials & Solar Cells, 2011, 95(2):636-643. |
[12] | TAO Y B, YOU Y, HE Y L. Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material[J]. Applied Thermal Engineering, 2016, 93:476-485. |
[13] | LI W Q, QU Z G, HE Y L, et al. Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin[J]. Applied Thermal Engineering, 2012, 37(2):1-9. |
[14] | SIAHPUSH A, O'BRIEN J, CREPEAU J. Phase change heat transfer enhancement using copper porous foam[J]. Journal of Heat Transfer, 2008, 130(8):318-323. |
[15] | 唐小梅, 于航. 使用泡沫铜增强相变材料换热性能的实验研究[J]. 建筑节能, 2012, (3):50-54. TANG X M, YU H. Experiment research on enhancing the heat transfer performance of phase change material by cooper foam material[J]. Building Energy Efficiency, 2012, (3):50-54. |
[16] | MARTINELLI M, BENTIVOGLIO F, CARON-SOUPART A, et al. Experimental study of a phase change thermal energy storage with copper foam[J]. Applied Thermal Engineering, 2016, 101:247-261. |
[17] | CUI H T. Experimental investigation on the heat charging process by paraffin filled with high porosity copper foam[J]. Applied Thermal Engineering, 2012, 39(39):26-28. |
[18] | 王增义, 刘中良, 马重芳. 热管式相变蓄热换热器储/放能过程中传热特性的实验研究[J]. 工程热物理学报, 2005, 26(6):989-991. WANG Z Y, LIU Z L, MA C F. Experimental study on heat transfer characteristics of the process of charging/discharging of a heat pipe heat exchanger with latent heat storage[J]. Journal of Engineering Thermophysics, 2005, 26(6):989-991. |
[19] | HORBANIUC B, POPESCU A, DUMITRA?CU G. The correlation between the number of fins and the discharge time for a finned heat pipe latent heat storage system[J]. Renewable Energy, 1996, 9(s 1/2/3/4):605-608. |
[20] | KHALIFA A, TAN L, MAHONY D, et al. Numerical analysis of latent heat thermal energy storage using miniature heat pipes:a potential thermal enhancement for CSP plant development[J]. Applied Thermal Engineering, 2016, 108:93-103. |
[21] | ROBAK C W, BERGMAN T L, FAGHRI A. Enhancement of latent heat energy storage using embedded heat pipes[J]. International Journal of Heat & Mass Transfer, 2011, 54(15):3476-3484. |
[22] | NITHYANANDAM K, PITCHUMANI R. Thermal energy storage with heat transfer augmentation using thermosyphons[J]. International Journal of Heat & Mass Transfer, 2013, 67(2):281-294. |
[23] | NITHYANANDAM K, PITCHUMANI R. Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power[J]. Applied Energy, 2013, 103(1):400-415. |
[24] | TIARI S, QIU S. Three-dimensional simulation of high temperature latent heat thermal energy storage system assisted by finned heat pipes[J]. Energy Conversion & Management, 2015, 105:260-271. |
[25] | TIARI S, QIU S, MAHDAVI M. Discharging process of a finned heat pipe-assisted thermal energy storage system with high temperature phase change material[J]. Energy Conversion & Management, 2016, 118:426-437. |
[26] | JUNG E G, BOO J H. Thermal analytical model of latent thermal storage with heat pipe heat exchanger for concentrated solar power[J]. Solar Energy, 2014, 102(4):318-332. |
[27] | LIU Z, WANG Z, MA C. An experimental study on heat transfer characteristics of heat pipe heat exchanger with latent heat storage(I):Charging only and discharging only modes[J]. Energy Conversion & Management, 2006, 47(7/8):944-966. |
[28] | LIU Z, WANG Z, MA C. An experimental study on the heat transfer characteristics of a heat pipe heat exchanger with latent heat storage (Ⅱ):Simultaneous charging/discharging modes[J]. Energy Conversion & Management, 2006, 47(7/8):967-991. |
[29] | ZHAO Y H, ZHANG K R, DIAO Y H. Heat pipe with micro-pore tubes array and making method thereof and heat exchanging system:US20110203777[P]. 2011. |
[30] | LI F F, DIAO Y H, ZHAO Y H, et al. Experimental study on the thermal performance of a new type of thermal energy storage based on flat micro-heat pipe array[J]. Energy Conversion & Management, 2016, 112:395-403. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[3] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[4] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[5] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[6] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[7] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[8] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[9] | Xiaoxuan WANG, Xiaohong HU, Yunan LU, Shiyong WANG, Fengxian FAN. Numerical simulation of flow characteristics in a rotating membrane filter [J]. CIESC Journal, 2023, 74(4): 1489-1498. |
[10] | Mingchuan LI, Shuanshi FAN, Fuhai XU, Huidong LU, Xiaojun LI. Existence and Laplace transform of the solution to Stefan phase change model in thermal dissociation hydrate [J]. CIESC Journal, 2023, 74(4): 1746-1754. |
[11] | Chi YIN, Zhengguo ZHANG, Ziye LING, Xiaoming FANG. Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation [J]. CIESC Journal, 2023, 74(4): 1795-1804. |
[12] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[13] | Yinning ZHANG, Jinqing WANG, Zhi FENG, Mingxiu ZHAN, Xu XU, Guangxue ZHANG, Zuohe CHI. Growth and coalescence behavior of bubbles in porous media under heating condition [J]. CIESC Journal, 2023, 74(4): 1509-1518. |
[14] | Shaohang YAN, Tianwei LAI, Yanwu WANG, Yu HOU, Shuangtao CHEN. Visual experimental study on cavitation of R134a in micro clearance [J]. CIESC Journal, 2023, 74(3): 1054-1061. |
[15] | Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 526
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 472
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||