CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 199-206.DOI: 10.11949/j.issn.0438-1157.20180822
• Energy and environmental engineering • Previous Articles Next Articles
Yuanmo WU1(),Shouyu ZHANG1(),Hua ZHANG1,Chen MU1,Hao LI1,Xiaobing SONG1,Junfu LYU2
Received:
2018-07-23
Revised:
2018-10-18
Online:
2019-01-05
Published:
2019-01-05
Contact:
Shouyu ZHANG
吴渊默1(),张守玉1(),张华1,慕晨1,李昊1,宋晓冰1,吕俊复2
通讯作者:
张守玉
作者简介:
吴渊默(1995—),男,硕士研究生,<email>wuyuanmo_barca@163.com</email>|张守玉(1971—),男,教授,<email>zhangsy-guo@163. com</email>
基金资助:
CLC Number:
Yuanmo WU, Shouyu ZHANG, Hua ZHANG, Chen MU, Hao LI, Xiaobing SONG, Junfu LYU. Relationship between pore structure and moisture reabsorption of lignite dewatered by high temperature drying process[J]. CIESC Journal, 2019, 70(1): 199-206.
吴渊默, 张守玉, 张华, 慕晨, 李昊, 宋晓冰, 吕俊复. 高温干燥对褐煤孔隙结构及水分复吸的影响[J]. 化工学报, 2019, 70(1): 199-206.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180822
Sample | Proximate analysis/%(mass) | Ultimate analysis/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mar | Mad | Aad | Vad | FCad | Cad | Had | Nad | St,ad | Oad | |
YM | 36.70 | 7.08 | 13.50 | 36.19 | 43.23 | 56.96 | 3.61 | 0.95 | 0.59 | 17.31 |
Table 1 Proximate and ultimate analyses of raw material
Sample | Proximate analysis/%(mass) | Ultimate analysis/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mar | Mad | Aad | Vad | FCad | Cad | Had | Nad | St,ad | Oad | |
YM | 36.70 | 7.08 | 13.50 | 36.19 | 43.23 | 56.96 | 3.61 | 0.95 | 0.59 | 17.31 |
Samples | Surface area/ (m2/g) | Pore volume/ (cm3/g) | Average pore diameter/nm |
---|---|---|---|
YM | 2.13173 | 0.006769 | 3.40078 |
YM-600℃ | 2.20542 | 0.006695 | 3.40177 |
YM-700℃ | 2.20848 | 0.006561 | 3.39702 |
YM-800℃ | 1.71702 | 0.006455 | 4.29893 |
Table 2 Pore structure tests of raw coal and dried semi-coke
Samples | Surface area/ (m2/g) | Pore volume/ (cm3/g) | Average pore diameter/nm |
---|---|---|---|
YM | 2.13173 | 0.006769 | 3.40078 |
YM-600℃ | 2.20542 | 0.006695 | 3.40177 |
YM-700℃ | 2.20848 | 0.006561 | 3.39702 |
YM-800℃ | 1.71702 | 0.006455 | 4.29893 |
Samples | Fractal dimension D1 | Fractal dimension D2 |
---|---|---|
YM | 2.3935 | 2.5258 |
YM-600℃ | 2.3464 | 2.5413 |
YM-700℃ | 2.3833 | 2.5481 |
YM-800℃ | 2.3974 | 2.4951 |
Table 3 Fractal dimension calculation result of samples before and after drying process
Samples | Fractal dimension D1 | Fractal dimension D2 |
---|---|---|
YM | 2.3935 | 2.5258 |
YM-600℃ | 2.3464 | 2.5413 |
YM-700℃ | 2.3833 | 2.5481 |
YM-800℃ | 2.3974 | 2.4951 |
1 | 尹立群. 我国褐煤资源及其利用前景[J]. 煤炭科学技术, 2004, 32(8): 12-14. |
YinL Q. Lignite resources and utilization outlook in China[J]. Coal Science and Technology, 2004, 32(8): 12-14. | |
2 | 李恩利, 高建国, 崔红梅, 等. 我国褐煤提质项目风险分析[J]. 煤炭经济研究, 2009, (12): 25-26. |
LiE L, GaoJ G, CuiH M, et al. Risk analysis of lignite upgrading project in China[J]. Journal of Coal Economic Research, 2009, (12): 25-26. | |
3 | 李昊, 张守玉, 李尤, 等. 低阶煤干燥过程水分析出动力学行为分析[J]. 煤炭学报, 2017, 42(11): 3014-3020. |
LiH, ZhangS Y, LiY, et al. Analysis of kinetic behavior of water analysis in low rank coal drying process[J]. Journal of China Coal Society, 2017, 42(11): 3014-3020. | |
4 | 赵洪宇, 任善普, 贾晋炜, 等. 褐煤经四氢化萘处理后的结构及热解-气化特性分析[J]. 化工学报, 2015, 66(10): 4193-4201. |
ZhaoH Y, RenS P, JiaJ W, et al. Structure and pyrolysis-gasification characteristics of lignite treated with tetralin[J]. CIESC Journal, 2015, 66(10): 4193-4201. | |
5 | 郭熙, 张守玉, 董爱霞, 等. 高温烟气中单颗粒褐煤干燥特性实验研究[J]. 上海理工大学学报, 2014, 36(6): 516-521. |
GuoX, ZhangS Y, DongA X, et al. Experimental study on drying characteristics of single particle lignite in high temperature flue gas[J]. Journal of University of Shanghai for Science and Technology, 2014, 36(6): 516-521. | |
6 | EvansD G. The brown-coal/water system(Part 4): Shrinkage on drying[J]. Fuel, 1973, 52(3): 186-190. |
7 | DeeviS C, SuubergE M. Physical changes accompanying drying of western US lignites[J]. Fuel, 1987, 66(4): 454-460. |
8 | 景晓霞, 杨云龙, 李志强, 等. 褐煤物化结构对水分复吸的影响[J]. 洁净煤技术, 2014, 20(1): 29-33. |
JingX X, YangY L, LiZ Q, et al. Influence of lignite physical and chemical structure on moisture re-absorption[J]. Clean Coal Technology, 2014, 20(1): 29-33. | |
9 | MrawS C, O'RourkeD F. Water in coal pores: the enthalpy of fusion reflects pore size distribution[J]. Journal of Colloid & Interface Science, 1982, 89(1): 268-271. |
10 | 赵孟浩, 张守玉, 郑红俊, 等. 低阶煤中含氧官能团干燥前后的演变规律[J]. 煤炭学报, 2016, 41(2): 483-489. |
ZhaoM H, ZhangS Y, ZhengH J, et al. Evolution of oxygen-containing functional groups before and after drying in low-rank coals[J]. Journal of China Coal Society, 2016, 41(2): 483-489. | |
11 | 李尤, 张守玉, 茆青, 等. 干燥温度对褐煤干燥后复吸特性的影响[J]. 煤炭学报, 2016, 41(10): 2454-2459. |
LiY, ZhangS Y, MaoQ, et al. Effects of drying temperature on re-suction properties of lignite after drying[J]. Journal of China Coal Society, 2016, 41(10): 2454-2459. | |
12 | 杨云龙. 蒙东褐煤的干燥特性及其对水分复吸的影响[D]. 太原: 太原理工大学, 2013: 23-27. |
YangY L. Drying characteristics of Mengdong brown coal and its effect on water resorption [D]. Taiyuan: Taiyuan University of Technology, 2013: 23-27. | |
13 | 李开志, 杨海平, 陈应泉, 等. 棉杆热解过程中焦孔隙结构演变及分形特征[J]. 中国电机工程学报, 2012, 32(s1): 115-120. |
LiK Z, YangH P, ChenY Q, et al. Evolution and fractal characteristics of coke pore structure during the pyrolysis of cotton stalks[J]. Proceedings of the CSEE, 2012, 32(s1): 115-120. | |
14 | 刘业凤, 王如竹. 新型复合吸附干燥剂的吸附动力学特性研究[J]. 上海理工大学学报, 2006, (2): 107-110. |
LiuY F, WangR Z. Study on adsorption kinetics of novel composite adsorption desiccant[J]. Journal of University of Shanghai for Science and Technology, 2006, (2): 107-110. | |
15 | 周游, 孙莉云, 郑国强, 等. 乳状液超声凝聚破乳[J]. 化工学报, 2009, 60(8): 1997-2002. |
ZhouY, SunL Y, ZhengG Q, et al. Ultrasonic coagulation and demulsification of emulsion[J]. CIESC Journal, 2009, 60(8): 1997-2002. | |
16 | 胡松, 孙路石, 向军, 等. 高速热解条件下谷壳颗粒物理结构的演化[J]. 化工学报, 2007, 58(11): 2889-2894. |
HuS, SunL S, XiangJ, et al. Evolution of physical structure of chaff particles under high-speed pyrolysis conditions[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(11): 2889-2894. | |
17 | 陈萍, 唐修义. 低温氮吸附法与煤中微孔隙特征的研究[J]. 煤炭学报, 2001, 26(5): 552-556. |
ChenP, TangX Y. Low-temperature nitrogen adsorption and micro-pore characteristics in coal[J]. Journal of China Coal Society, 2001, 26(5): 552-556. | |
18 | 黄少萌. 褐煤孔隙特性及水分脱除的迁移研究[D]. 北京: 中国矿业大学, 2016: 32-34. |
HuangS M. Study on pore characteristics and removal of water from lignite[D]. Beijing: China University of Mining and Technology, 2016: 32-34. | |
19 | GeL, ZhangY, WangZ, et al. Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals[J]. Energy Conversion & Management, 2013, 71(71): 84-91. |
20 | 张艳丽. 提质褐煤复吸水分主要影响因素的解析及其动力学分析[D]. 太原: 太原理工大学, 2015: 17-19. |
ZhangY L. Analysis of the main influencing factors of reabsorption of upgraded lignite and its dynamics analysis[D]. Taiyuan: Taiyuan University of Technology, 2015: 17-19. | |
21 | HaulR. Adsorption, surface area and porosity[J]. Zeitschrift Für Physikalische Chemie, 1969, 63(1/2/3/4): 220-221. |
22 | ZhangZ, YangZ. Theoretical and practical discussion of measurement accuracy for physisorption with micro- and mesoporous materials[J]. Chinese Journal of Catalysis, 2013, 34(10): 1797-1810. |
23 | PfeiferP, WuY J, ColeM W, et al. Multilayer adsorption on a fractally rough surface[J]. Physical Review Letters, 1989, 62(17): 1997. |
24 | ZhangS, TangS, TangD, et al. Determining fractal dimensions of coal pores by FHH model: problems and effects[J]. Journal of Natural Gas Science & Engineering, 2014, 21: 929-939. |
25 | XuS, ZhouZ, YuG, et al. Effects of pyrolysis on the pore structure of four Chinese coals[J]. Energy & Fuels, 2010, 24(2): 1114-1123. |
26 | SongX X, TangY G, LiW, et al. Fractal characteristics of adsorption pores of tectonic coal from Zhongliangshan southern coalmine[J]. Journal of China Coal Society, 2013, 38(1): 134-139. |
27 | YaoY, LiuD, TangD, et al. Fractal characterization of adsorption-pores of coals from North China: an investigation on CH4 adsorption capacity of coals[J]. International Journal of Coal Geology, 2008, 73(1): 27-42. |
28 | HuS, LiM, XiangJ, et al. Fractal characteristic of three Chinese coals[J]. Fuel, 2004, 83(10): 1307-1313. |
29 | LiuJ Z, ZhuJ F, ChengJ, et al. Pore structure and fractal analysis of Ximeng lignite under microwave irradiation[J]. Fuel, 2015, 146: 41-50. |
30 | TakanohashiT, YoshidaT, IinoM, et al. Mixed solvent extraction yield and structural changes of heat-treated coals and their relation to coal fluidity[J]. Tetsu- to- Hagane, 1996, 82(5): 366-371. |
31 | 孙晓林, 郭晓镭, 陆海峰, 等. 呼伦贝尔褐煤等温干燥过程[J]. 化工学报, 2015, 66(7): 2628-2635. |
SunX L, GuoX L, LuH F, et al. Isothermal drying process of Hulunbeier lignite[J]. CIESC Journal, 2015, 66(7): 2628-2635. | |
32 | 平传娟, 周俊虎, 程军, 等. 混煤热解过程中的表面形态[J]. 化工学报, 2007, 58(7): 1798-1804. |
PingC J, ZhouJ H, ChengJ, et al. Surface morphology during coal pyrolysis process[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(7): 1798-1804. |
[1] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[2] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[3] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[4] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[5] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
[6] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[7] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[8] | Daoyin LIU, Bingqi CHEN, Zuyang ZHANG, Yan WU. Effect of agglomerate structure on drag force by numerical simulation [J]. CIESC Journal, 2023, 74(6): 2351-2362. |
[9] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[10] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[11] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[12] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[13] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[14] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
[15] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||