1 |
张玮娜 . 重油加工处理技术浅析[J]. 化工管理, 2018, (17): 88-89.
|
|
Zhang W N . A analysis of heavy oil processing technology[J]. Chemical Enterprise Management, 2018, (17): 88-89.
|
2 |
张东明 . 我国烯烃原料低碳化展望[J]. 化学工业, 2017, 35(5): 24-31.
|
|
Zhang D M . Prospects of low carbonization of olefin raw materials in China[J]. Chemical Industry, 2017, 35(5): 24-31.
|
3 |
张乾, 李庆峰, 房倚天, 等 . 重油残渣焦水蒸气气化反应特性的研究[J]. 燃料化学学报, 2012, 40(9): 1074-1080.
|
|
Zhang Q , Li Q F , Fang Y T , et al . Steam gasification reactivity of chars from heavy oil residue[J]. Journal of Fuel Chemistry and Technology, 2012, 40(9): 1074-1080.
|
4 |
Schuetz C A , Frenklach M . Nucleation of soot: molecular dynamics simulations of pyrene dimerization[J]. Proceedings of the Combustion Institute, 2002, 29(2): 2307-2314.
|
5 |
Chernov V , Thomson M J , Dworkin S B , et al . Soot formation with C1 and C2 fuels using an improved chemical mechanism for PAH growth[J]. Combustion and Flame, 2014, 161(2): 592-601.
|
6 |
Qiu L , Cheng X B , Li Z Q . Experimental and numerical investigation on soot volume fractions and number densities in non-smoking laminar n-heptane/n-butanol coflow flames[J]. Combustion and Flame, 2018, 191: 394-407.
|
7 |
Zhang T F , Thomson M J . A numerical study of the effects of n-propylbenzene addition to n-dodecane on soot formation in a laminar coflow diffusion flame[J]. Combustion and Flame, 2018, 190: 416-431.
|
8 |
Jerez A , Consalvi J L , Fuentes A . Soot production modeling in a laminar coflow ethylene diffusion flame at different oxygen indices using a PAH-based sectional model[J]. Fuel, 2018, 231: 404-416.
|
9 |
Li Q , Wang Q , Kayamori A . Experimental study and modeling of heavy tar steam reforming[J]. Fuel Processing Technology, 2018, 178: 180-188.
|
10 |
Ghiassi H , Toth P , Jaramillo I C , et al . Soot oxidation-induced fragmentation (Ⅰ): The relationship between soot nanostructure and oxidation-induced fragmentation(article)[J]. Combustion and Flame, 2016, 163: 179-187.
|
11 |
Li Y Y , Li G Y , Zhang H , et al . ReaxFF study on nitrogen-transfer mechanism in the oxidation process of lignite[J]. Fuel, 2017, 193: 331-342.
|
12 |
Liu J P , Liu P G , Wang M J . Molecular dynamics simulations of aluminum nanoparticles adsorbed by ethanol molecules using the ReaxFF reactive force field[J]. Computational Materials Science, 2018, 151: 95-105.
|
13 |
Jin H , Wu Y , Guo L J , et al . Molecular dynamic investigation on hydrogen production by polycyclic aromatic hydrocarbon gasification in supercritical water[J]. International Journal of Hydrogen Energy, 2016, 41(6): 3837-3843.
|
14 |
毛倩, 罗开红, van Duin A C T . 初始碳烟颗粒形成的反应分子动力学模拟[J]. 工程热物理学报, 2017, 38(5): 1087-1091.
|
|
Mao Q , Luo K H , van Duin A C T . A ReaxFF molccular dynamics simulation of the formation of nascent soot particles[J]. Journal of Engineering Thermophysics, 2017, 38(5): 1087-1091.
|
15 |
韩嵩 . 航空煤油燃烧和碳烟形成初始反应的分子动力学模拟[D]. 北京: 中国科学院大学, 2018.
|
|
Han S . Initial reaction pathway of aviation kerosene combustion and soot formation revealed by reactive molecular dynamics simulations[D]. Beijing: University of Chinese Academy of Sciences, 2018.
|
16 |
Han S , Li X X , Nie F G , et al . Revealing the initial chemistry of soot nanoparticle formation by Reaxff molecular dynamics simulations[J]. Energy & Fuels, 2017, 31(8): 8434-8444
|
17 |
杜林, 王五静, 张彼得, 等 . 基于ReaxFF场的矿物绝缘油热解分子动力学模拟[J]. 高压电技术, 2018, 44(2): 488-497.
|
|
Du L , Wang W J , Zhang B D , et al . Molecular dynamics simulation of mineral insulating oil pyrolysis based on force field Reaxff[J]. High Voltage Engineering, 2018, 44(2): 488-497.
|
18 |
Liu J , Guo X . ReaxFF molecular dynamics simulation of pyrolysis and combustion of pyridine[J]. Fuel Processing Technology, 2017, 161: 107-115.
|
19 |
Sϕrensen M R , Voter A F . Temperature-accelerated dynamics for simulation of infrequent events[J]. Journal of Chemical Physics, 2000, 112(21): 9599-9606.
|
20 |
Chenoweth K , van Duin A C T , Goddard W A . ReaxFF reactive force for molecular dynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040-1053.
|
21 |
王遥 . FCC油浆的结构表征及提高其抗老化性能的改性反应研究[D]. 上海: 华东理工大学, 2018.
|
|
Wang Y . Characterization of FCC slurry and study of modified reaction to increase aging resistance[D]. Shanghai: East China University of Science and Technology, 2018.
|
22 |
李斌 . 催化裂化油浆的综合利用[D]. 东营: 中国石油大学, 2011.
|
|
Li B . Studies on the utilization of the FCC slurry[D]. Dongying: China University of Petroleum, 2011.
|
23 |
李林, 徐海清 . 催化油浆综合利用的技术措施[J]. 化学工业与工程技术, 2013, 34(1): 20-24.
|
|
Li L , Xu H Q . Technical measures of comprehensive utilization of catalytic cracking slurry oil[J]. Journal of Chemical Industry & Engineering, 2013, 34(1): 20-24.
|
24 |
查庆芳, 张玉贞, 郭燕生, 等 . FCC油浆富芳烃分的热解[J]. 石油学报,2005,21(1): 49-56.
|
|
Cha Q F , Zhang Y Z , Guo Y S , et al . Pyrolysis of aromatic enrichment fraction of FCC slurry[J]. Acta Petrolei Sinica, 2005, 21(1): 49-56.
|
25 |
Sato T , Trung P H , Tomita T , et al . Effect of water density and air pressure on partial oxidation of bitumen in supercritical water[J]. Fuel, 2012, 95(95): 347-351.
|