1 |
Vianello C , Macchietto S , Maschio G . Conceptual models for CO2 release and risk assessment: a review[J]. Chemical Engineering Transactions, 2012, 26: 573-578.
|
2 |
Liu X , Godbole A , Lu C , et al . Investigation of terrain effects on the consequence distance of CO2 released from high-pressure pipelines[J]. International Journal of Greenhouse Gas Control, 2017, 66: 264-275.
|
3 |
Liu B , Liu X , Lu C , et al . A CFD decompression model for CO2 mixture and the influence of non-equilibrium phase transition[J]. Applied Energy, 2018, 227: 516-524.
|
4 |
Lee J S , Choieport E C . CO2 leakage environmental damage cost— a CCS project in South Korea[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 753-758.
|
5 |
Liu X , Godbole A , Lu C , et al . Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state[J]. Applied Energy, 2014, 126: 56-68.
|
6 |
Brown S , Martynov S , Mahgerefteh H , et al . A homogeneous relaxation flow model for the full bore rupture of dense phase CO2 pipelines[J]. International Journal of Greenhouse Gas Control, 2013, 17: 349-356.
|
7 |
Woolley R M , Fairweather M , Wareing C J . An integrated, multi-scale modelling approach for the simulation of multiphase dispersion from accidental CO2 pipeline releases in realistic terrain[J]. International Journal of Greenhouse Gas Control, 2014, 27: 221-238.
|
8 |
Morrow T B , Bass R L , Lock J A . An LPG pipeline break flow model[J]. Journal of Energy Resources Technology, 1983, 105: 379-387.
|
9 |
Witlox W M H , Stene J , Harper M . Modelling of discharge and atmospheric dispersion for carbon dioxide releases including sensitivity analysis for wide range of scenarios[J]. Energy Procedia, 2011, 4: 2253-2260.
|
10 |
Lu C , Michal G , Elshahomi A . Investigation of the effects of pipe wall roughness and pipe diameter on the decompression wave speed in natural gas pipelines[C]//9th International Pipeline Conference. Calgary, Alberta, Canada, 2012.
|
11 |
Angielczyk W , Bartosiewicz Y , Butrymowicz D , et al . 1-D modeling of supersonic carbon dioxide two-phase flow through ejector motive nozzle[C]//International Refrigeration and Air Conditioning Conference. Purdue University, 2010.
|
12 |
Brown S , Martynov S , Mahgerefteh H , et al . Modelling the non-equilibrium two-phase flow during depressurisation of CO2 pipelines[J]. International Journal of Greenhouse Gas Control, 2014, 30: 9-18.
|
13 |
Elshahomi A , Lu C , Michal C , et al . Decompression wave speed in CO2 mixtures: CFD modelling with the GERG-2008 equation of state[J]. Applied Energy, 2015 140: 20-32.
|
14 |
Liu X , Godbole A , Lu C , et al . Study of the consequences of CO2 released from high-pressure pipelines[J]. Atmospheric Environment, 2015, 116: 51-64.
|
15 |
Deng Y J , Hu H B , Yu B . A method for simulating the release of natural gas from the rupture of high-pressure pipelines in any terrain[J]. Journal of Hazardous Materials, 2018, 342: 418-428.
|
16 |
Peng D Y , Robinson D B . A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15: 59-64.
|
17 |
Kunz O , Wagner W . The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004[J]. Journal of Chemical & Engineering Data, 2012, 57: 3032-3091.
|
18 |
Liu B , Liu X , Lu C , et al . Multi-phase decompression modeling of CO2 pipelines[J]. Greenhouse Gases: Science and Technology, 2017, 7(4): 665-679.
|
19 |
Guo X , Yan X , Yu J , et al . Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline[J]. Energy, 2017, 118: 1066-1078.
|
20 |
Botros K K , Geerligs J , Rothwell B , et al . Measurements of decompression wave speed in binary mixtures of carbon dioxide and impurities[J]. Journal of Pressure Vessel Technology, 2016, 139(2): 021301.
|
21 |
Botros K K , Geerligs J , Rothwell B , et al . Transferability of decompression wave speed measured by a small-diameter shock tube to full size pipelines and implications for determining required fracture propagation resistance[J]. International Journal of Pressure Vessels and Piping, 2010, 87: 681-695.
|
22 |
Botros K K , Geerligs J , Rothwell B , et al . Measurements of decompression wave speed in simulated anthropogenic carbon dioxide mixtures containing hydrogen[J]. Journal of Pressure Vessel Technology, 2017, 139(2): 021201-7.
|
23 |
Armsmstrong K , Allanson D . 2” NB shocktube releases of dense phase CO2 [R]. Leicestershire: DNV GL&GL Industrial Services UK Ltd, 2014.
|
24 |
Oke A , Mahgerefteh H , Economou I , et al . A transient outflow model for pipeline puncture[J]. Chemical Engineering Science, 2003, 58: 4591-4604.
|
25 |
Phillips A G , Robinson C G . Gas decompression behavior following the rupture of high pressure pipelines - Phase 1, PRCI Contract PR-273-0135[C]//Pipeline Research Council International, 2002.
|
26 |
Savidge J L . Report to AGA transmission measurement committee task Group 13 on A.G.A. Report No.10 speed of sound,[C]//AGA Operations Conference. Marriott, Denver, USA, 2001.
|
27 |
Zhou X J , Li K , Tu R , et al . A modelling study of the multiphase leakage flow from pressurised CO2 pipeline[J]. Journal of Hazardous Materials, 2016, 306: 286-294.
|
28 |
Aursand E , Aursand P , Hammer M , et al . The influence of CO2 mixture composition and equations of state on simulations of transient pipeline decompression[J]. International Journal of Greenhouse Gas Control, 2016, 54(2): 599-609.
|
29 |
ANSYS . ANSYS FLUENT UDF Manual[Z]. USA: ANSYS Inc., 2011.
|
30 |
Lee W H . A Pressure Iteration Scheme for Two-phase Flow Modeling [M]. Washington D C: Hemisphere Publishing, 1980: 407-431.
|