CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 987-994.DOI: 10.11949/j.issn.0438-1157.20181180
• Separation engineering • Previous Articles Next Articles
Junmiao TANG(),Haizhen YU,Xuhua SHI(),Chudong TONG
Received:
2018-10-11
Revised:
2018-12-20
Online:
2019-03-05
Published:
2019-03-05
Contact:
Xuhua SHI
通讯作者:
史旭华
作者简介:
<named-content content-type="corresp-name">唐俊苗</named-content>(1998—),女,本科,<email>1070595926@qq.com</email>|史旭华(1967—),女,博士,教授,<email>shixuhua@nbu.edu.cn</email>
基金资助:
CLC Number:
Junmiao TANG, Haizhen YU, Xuhua SHI, Chudong TONG. Dynamic monitoring of chemical processes based on latent variable auto-regressive algorithm[J]. CIESC Journal, 2019, 70(3): 987-994.
唐俊苗, 俞海珍, 史旭华, 童楚东. 基于潜变量自回归算法的化工过程动态监测方法[J]. 化工学报, 2019, 70(3): 987-994.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181180
No. | DPCA | DLV | DiPCA | LVAR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.75 | 0.13 | 0 | 0 | 0.63 | 0.25 | 0.88 | 0.63 | 0 | 0.88 |
2 | 1.50 | 2.75 | 1.00 | 2.25 | 9.63 | 1.63 | 1.88 | 3.50 | 1.63 | 4.13 |
4 | 94.00 | 0 | 95.85 | 0 | 87.13 | 0 | 77.25 | 0 | 0.13 | 0 |
5 | 76.00 | 55.00 | 89.95 | 81.75 | 0.13 | 76.69 | 93.63 | 79.38 | 0 | 0 |
6 | 1.13 | 0 | 0.25 | 1.00 | 0 | 0.50 | 1.63 | 0 | 0 | 0 |
7 | 0 | 0 | 82.28 | 0 | 69.75 | 0 | 0 | 0 | 58.50 | 0 |
8 | 2.63 | 3.00 | 12.19 | 6.38 | 30.50 | 5.14 | 16.88 | 19.50 | 1.88 | 25.63 |
10 | 75.13 | 48.88 | 94.22 | 90.50 | 37.50 | 83.33 | 97.25 | 71.13 | 19.63 | 39.25 |
11 | 72.88 | 6.00 | 89.32 | 19.00 | 88.50 | 14.79 | 58.25 | 12.63 | 23.50 | 39.88 |
12 | 0.88 | 3.63 | 19.72 | 9.00 | 17.38 | 8.15 | 21.00 | 9.88 | 0.25 | 3.13 |
13 | 5.75 | 4.63 | 29.27 | 4.88 | 11.00 | 6.52 | 26.63 | 7.75 | 4.50 | 7.63 |
14 | 0.13 | 0 | 0 | 0 | 11.25 | 0 | 12.75 | 0 | 0 | 24.13 |
16 | 90.38 | 48.00 | 91.08 | 90.63 | 36.63 | 81.70 | 98.38 | 69.50 | 27.38 | 16.88 |
17 | 22.75 | 2.25 | 31.28 | 5.13 | 6.25 | 11.53 | 33.13 | 3.25 | 2.25 | 12.75 |
18 | 11.13 | 9.38 | 11.43 | 10.00 | 9.63 | 9.52 | 10.88 | 9.50 | 9.88 | 9.63 |
19 | 77.25 | 33.38 | 90.58 | 81.13 | 37.00 | 60.53 | 82.25 | 72.63 | 41.88 | 11.63 |
20 | 61.13 | 36.38 | 73.12 | 60.63 | 35.13 | 50.63 | 78.75 | 47.38 | 47.63 | 25.13 |
21 | 54.25 | 49.50 | 92.46 | 49.25 | 83.13 | 73.56 | 78.13 | 74.63 | 71.38 | 68.5 |
Ave. | 35.98 | 16.83 | 50.22 | 28.42 | 31.73 | 26.92 | 43.86 | 26.74 | 16.54 | 15.28 |
Table 1 False alarm rates and missing alarm rates achieved in TE process
No. | DPCA | DLV | DiPCA | LVAR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.75 | 0.13 | 0 | 0 | 0.63 | 0.25 | 0.88 | 0.63 | 0 | 0.88 |
2 | 1.50 | 2.75 | 1.00 | 2.25 | 9.63 | 1.63 | 1.88 | 3.50 | 1.63 | 4.13 |
4 | 94.00 | 0 | 95.85 | 0 | 87.13 | 0 | 77.25 | 0 | 0.13 | 0 |
5 | 76.00 | 55.00 | 89.95 | 81.75 | 0.13 | 76.69 | 93.63 | 79.38 | 0 | 0 |
6 | 1.13 | 0 | 0.25 | 1.00 | 0 | 0.50 | 1.63 | 0 | 0 | 0 |
7 | 0 | 0 | 82.28 | 0 | 69.75 | 0 | 0 | 0 | 58.50 | 0 |
8 | 2.63 | 3.00 | 12.19 | 6.38 | 30.50 | 5.14 | 16.88 | 19.50 | 1.88 | 25.63 |
10 | 75.13 | 48.88 | 94.22 | 90.50 | 37.50 | 83.33 | 97.25 | 71.13 | 19.63 | 39.25 |
11 | 72.88 | 6.00 | 89.32 | 19.00 | 88.50 | 14.79 | 58.25 | 12.63 | 23.50 | 39.88 |
12 | 0.88 | 3.63 | 19.72 | 9.00 | 17.38 | 8.15 | 21.00 | 9.88 | 0.25 | 3.13 |
13 | 5.75 | 4.63 | 29.27 | 4.88 | 11.00 | 6.52 | 26.63 | 7.75 | 4.50 | 7.63 |
14 | 0.13 | 0 | 0 | 0 | 11.25 | 0 | 12.75 | 0 | 0 | 24.13 |
16 | 90.38 | 48.00 | 91.08 | 90.63 | 36.63 | 81.70 | 98.38 | 69.50 | 27.38 | 16.88 |
17 | 22.75 | 2.25 | 31.28 | 5.13 | 6.25 | 11.53 | 33.13 | 3.25 | 2.25 | 12.75 |
18 | 11.13 | 9.38 | 11.43 | 10.00 | 9.63 | 9.52 | 10.88 | 9.50 | 9.88 | 9.63 |
19 | 77.25 | 33.38 | 90.58 | 81.13 | 37.00 | 60.53 | 82.25 | 72.63 | 41.88 | 11.63 |
20 | 61.13 | 36.38 | 73.12 | 60.63 | 35.13 | 50.63 | 78.75 | 47.38 | 47.63 | 25.13 |
21 | 54.25 | 49.50 | 92.46 | 49.25 | 83.13 | 73.56 | 78.13 | 74.63 | 71.38 | 68.5 |
Ave. | 35.98 | 16.83 | 50.22 | 28.42 | 31.73 | 26.92 | 43.86 | 26.74 | 16.54 | 15.28 |
1 | TidririK, ChattinN, VerronS, et al. Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: a review of researches and future challenges [J]. Annu. Rev. Control, 2016, 42: 63-81. |
2 | TongC, El-FarraN H, PalazogluA, et al. Fault detection and isolation in hybrid process systems using a combined data-driven and observer-design methodology [J]. AIChE J., 2014, 60(8): 2805-2814. |
3 | ZhouL, ZhengJ, GeZ, et al. Multimode process monitoring based on switching autoregressive dynamic latent variable model [J]. IEEE Trans. Ind. Electron., 2018, 65(10): 8184-8194. |
4 | GeZ. Review on data-driven modeling and monitoring for plant-wide industrial processes [J]. Chemom. Intell. Lab. Syst., 2017, 171: 16-25. |
5 | SeversonK, ChaiwatanodomP, BraatzR D. Perspectives on process monitoring of industrial systems [J]. Annu. Rev. Control, 2016, 42: 190-200. |
6 | DongY, QinS J. Regression on dynamic PLS structures for supervised learning of dynamic data [J]. J. Process Control, 2018, 68: 64-72. |
7 | 蒋栋年, 李炜. 基于数据驱动残差评价策略的故障检测方法[J]. 控制与决策, 2017, 32(7): 1181-1188. |
JiangD N, LiW. Fault detection method based on data-driven residual evaluation strategy [J]. Control & Decision, 2017, 32(7): 1181-1188. | |
8 | GeZ, SongZ, DingS, et al. Data mining and analytics in process industry: the role of machine learning [J]. IEEE Access, 2017, 5: 20590-20616. |
9 | 董顺, 李益国, 孙栓柱, 等. 基于状态空间主成分分析网络的故障检测方法[J]. 化工学报, 2018, 69(8): 3528-3536. |
DongS, LiY G, SunS Z, et al. Fault detection method based on state space-PCANet [J]. CIESC Journal, 2018, 69(8): 3528-3536. | |
10 | 童楚东, 蓝艇, 史旭华. 基于互信息的分散式动态PCA故障检测方法[J]. 化工学报, 2016, 67(10): 4317-4323. |
TongC D, LanT, ShiX H. Fault detection by decentralized dynamic PCA algorithm on mutual information [J]. CIESC Journal, 2016, 67(10): 4317-4323. | |
11 | 赵帅, 宋冰, 侍洪波. 基于加权互信息主元分析算法的质量相关故障检测[J]. 化工学报, 2018, 69(3): 926-973. |
ZhaoS, SongB, ShiH B. Quality-related fault detection based on weighted mutual information principal component analysis [J]. CIESC Journal, 2018, 69(3): 926-973. | |
12 | LiuY, ZhangG, XuB. Compressive sparse principal component analysis for process supervisory monitoring and fault detection [J]. J. Process Control, 2017, 50: 1-10. |
13 | 蓝艇, 童楚东, 史旭华. 变量加权型主元分析算法及其在故障检测中的应用[J]. 化工学报, 2017, 68(8): 3177-3182. |
LanT, TongC D, ShiX H. Variable weighted principal component analysis algorithm and its application in fault detection [J]. CIESC Journal, 2017, 68(8): 3177-3182. | |
14 | TongC, LanT, ShiX. Fault detection and diagnosis of dynamic processes using weighted dynamic decentralized PCA approach [J]. Chemom. Intell. Lab. Syst., 2017, 161: 34-42. |
15 | XiaoZ, WangH, ZhouJ. Robust dynamic process monitoring based on sparse representation preserving embedding [J]. J. Process Control, 2016, 40: 119-133. |
16 | LeeJ M, YooC K, LeeI B. Statistical monitoring of dynamic processes based on dynamic independent component analysis [J]. Chem. Eng. Sci., 2004, 59: 2995-3006. |
17 | ZhaoH. Dynamic graph embedding for fault detection [J]. Comput. Chem. Eng., 2018, 117: 359-371. |
18 | Vanden KerkhofP, GinsG, VanlaerJ, et al. Dynamic model-based fault diagnosis for (bio)chemical batch processes [J]. Comput. Chem. Eng., 2012, 40: 12-21. |
19 | ChoiS W, MorrisJ, LeeI B. Dynamic model-based batch process monitoring [J]. Chem. Eng. Sci., 2008, 63: 622-636. |
20 | ZhaoC, GaoF. Online fault prognosis with relative deviation analysis and vector autoregressive modeling [J]. Chem. Eng. Sci., 2015, 138: 531-543. |
21 | LiG, QinS J, ZhouD. A new method of dynamic latent-variable modeling for process monitoring [J]. IEEE Trans. Ind. Electron., 2014, 61(11): 6438-6445. |
22 | DongY, QinS J. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring [J]. J. Process Control, 2018, 67: 1-11. |
23 | ZhouL, LiG, SongZ, QinS J. Autoregressvie dynamic latent variable models for process monitoring [J]. IEEE Tran. Control Syst. Tech., 2017, 25(1): 366-373. |
24 | ShangJ, ChenM, ZhangH. Fault detection based on augmented kernel Mahalanobis distance for nonlinear dynamic processes[J]. Comput. Chem. Eng., 2018, 109: 311-321. |
25 | DownsJ J, VogekE F. A plant-wide industrial process control problem [J]. Comput. Chem. Eng., 1993, 17(3): 245-255. |
26 | 仓文涛, 杨慧中. 基于主元子空间富信息重构的过程监测方法[J]. 化工学报, 2018, 69(3): 1114-1120. |
CangW T, YangH Z. A process monitoring method based on informative principal component subspace reconstruction [J]. CIESC Journal, 2018, 69(3): 1114-1120. | |
27 | 周乐, 宋执环, 侯北平, 等. 一种鲁棒半监督建模方法及其在化工过程故障检测中的应用[J]. 化工学报, 2017, 68(3): 1109-1115. |
ZhouL, SongZ H, HouB P, et al. Robust semi-supervised modelling method and its application to fault detection in chemical processes [J]. CIESC Journal, 2017, 68(3): 1109-1115. | |
28 | QinS J. Statistical process monitoring: basics and beyond [J]. J. Chemom., 2003, 17(7/8): 480-502. |
29 | 杨健, 宋冰, 谭帅, 等. 时序约束NPE算法在化工过程故障检测中的应用[J]. 化工学报, 2016, 67(12): 5131-5139. |
YangJ, SongB, TanS, et al. Time constrained NPE for fault detection in chemical processes [J]. CIESC Journal, 2016, 67(12): 5131-5139. | |
30 | BakdiA, KouadriA. A new adaptive PCA based thresholding scheme for fault detection in complex systems [J]. Chemom. Intell. Lab. Syst., 2017, 162: 83-93. |
31 | 孙栓柱, 董顺, 江叶峰, 等. 基于最小充分统计量模式分析的故障检测方法[J]. 化工学报, 2018, 69(3): 1228-1237. |
SunS Z, DongS F, JiangY F, et al. Fault detection method based on minimum sufficient statistics pattern analysis [J]. CIESC Journal, 2018, 69(3): 1228-1237. | |
32 | LiuK, FeiZ, YueB, et al. Adaptive sparse principal component analysis for enhanced process monitoring and fault isolation [J]. Chemom. Intell. Lab. Syst., 2015, 146: 426-436. |
[1] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[2] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[3] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[4] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[5] | Guang WANG, Fashun SHAN, Yucheng QIAN, Jianfang JIAO. Incipient fault detection method for chemical process based on ensemble learning transfer entropy [J]. CIESC Journal, 2023, 74(7): 2967-2978. |
[6] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[7] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[8] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[9] | Bing SONG, Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN. Research on quality-related fault detection method based on VAE-OCCA [J]. CIESC Journal, 2023, 74(4): 1630-1638. |
[10] | Minghui YANG, Xiaoyue LIU, Xiaogang DENG, Mingyan LIAO, Chunwang HOU. Incipient fault detection for dynamic chemical processes based on weighted probability CVDA [J]. CIESC Journal, 2022, 73(9): 3963-3972. |
[11] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[12] | Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model [J]. CIESC Journal, 2022, 73(9): 3983-3993. |
[13] | Jinyu GUO, Zhe WANG, Yuan LI. Fault detection method based on kernel entropy independent component analysis [J]. CIESC Journal, 2022, 73(8): 3647-3658. |
[14] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
[15] | Xin ZHANG, Li ZHOU, Shihui WANG, Xu JI, Kexin BI. Integrated optimization of refinery hydrogen networks with crude oil properties fluctuations [J]. CIESC Journal, 2022, 73(4): 1631-1646. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||