CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 1198-1207.DOI: 10.11949/j.issn.0438-1157.20181233
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Yunbiao DUAN1(),Cunying XU2,3(),Xiang WANG2,Hai LIU2,Mengting HUANG2
Received:
2018-10-19
Revised:
2018-12-05
Online:
2019-03-05
Published:
2019-03-05
Contact:
Cunying XU
通讯作者:
徐存英
作者简介:
<named-content content-type="corresp-name">段云彪</named-content>(1963—),男,高级实验师,<email>1037550651@qq.com</email>|徐存英(1971—),女,博士,教授,<email>xucunying@foxmail.com</email>
基金资助:
CLC Number:
Yunbiao DUAN, Cunying XU, Xiang WANG, Hai LIU, Mengting HUANG. Synthesis of Fe3+-doped ZnO nanostructures by antisolvent precipitation method and their visible photocatalytic activity[J]. CIESC Journal, 2019, 70(3): 1198-1207.
段云彪, 徐存英, 王祥, 刘海, 黄梦婷. 反溶剂沉淀法合成Fe3+掺杂ZnO纳米结构及其可见光催化性能[J]. 化工学报, 2019, 70(3): 1198-1207.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181233
Fe3+掺杂量/%(atom) | 降解率/% | 降解率提高/% |
---|---|---|
0.0 | 35.6 | 0 |
0.5 | 65.7 | 84.6 |
1.0 | 71.8 | 101.6 |
3.0 | 69.4 | 94.9 |
5.0 | 60.6 | 70.2 |
Table 1 Comparison of photocatalytic degradation of RhBbetween pure ZnO and different Fe3+ doping amount of Fe-ZnO
Fe3+掺杂量/%(atom) | 降解率/% | 降解率提高/% |
---|---|---|
0.0 | 35.6 | 0 |
0.5 | 65.7 | 84.6 |
1.0 | 71.8 | 101.6 |
3.0 | 69.4 | 94.9 |
5.0 | 60.6 | 70.2 |
1 | FortunaoE, BarquinhaP, PimentelA, et al. Recent advances in ZnO transparent thin film transistors[J]. Thin Solid Films, 2005, 487(1/2): 205-211. |
2 | SalehR, DjajaN F. UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles[J]. Superlattices and Microstructures, 2014, 74: 217-233. |
3 | WangY, ZhaoX, DuanL, et al. Structure, luminescence and photocatalytic activity of Mg-doped ZnO nanoparticles prepared by auto combustion method[J]. Materials Science in Semiconductor Processing, 2015, 29: 372-379. |
4 | 丁艳, 马歌, 李良超, 等. M2+(M= Cu, Cd, Ag, Fe) 掺杂氧化锌纳米粉晶的抗菌性能[J]. 无机化学学报, 2014, 30(2): 293-302. |
DingY, MaG, LiL C, et al. Antibacterial activities of doped ZnO nano-powder with M2+ (M=Cu, Cd, Ag and Fe) [J]. Chinese Journal of Inorganic Chemistry, 2014, 30(2): 293-302. | |
5 | KumarR, UmarA, KumarG, et al. Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye[J]. Ceramics International, 2015, 41(6): 7773-7782. |
6 | ShuklaS K, AgorkuE S, MittalH, et al. Synthesis, characterization and photoluminescence properties of Ce 3+-doped ZnO-nanophosphors[J]. Chemical Papers, 2014, 68(2): 217-222. |
7 | IsmailI M I, AslamM, AlmeelbiT, et al. Ce3+ impregnated ZnO: a highly efficient photocatalyst for sunlight mediated mineralization[J]. RSC Advances, 2014, 4(31): 16043-16046. |
8 | SharmaD K, SharmaK K, KumarV, et al. Effect of Ce doping on the structural, optical and magnetic properties of ZnO nanoparticles[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(10): 10330-10335. |
9 | MayJ W, MaJ, BadaevaE, et al. Effect of excited-state structural relaxation on midgap excitations in Co2+-doped ZnO quantum dots[J]. The Journal of Physical Chemistry C, 2014, 118(24): 13152-13156. |
10 | KumarS, SongT K, GautamS, et al. Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles[J]. Materials Research Bulletin, 2015, 66: 76-82. |
11 | RazaW, HaqueM M, MuneerM. Synthesis of visible light driven ZnO: characterization and photocatalytic performance[J]. Applied Surface Science, 2014, 322: 215-224. |
12 | KanevaN, BojinovaA, PapazovaK, et al. Photocatalytic purification of dye contaminated sea water by lanthanide (La3+, Ce3+, Eu3+) modified ZnO[J]. Catalysis Today, 2015, 252: 113-119. |
13 | ChenC, MaW, ZhaoJ. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chem. Soc. Rev., 2010, 39: 4206-4219. |
14 | BaikJ M, KangT W, LeeJ L. Effects of N2O plasma treatment on magnetic properties of (Zn, Mn)O nanorods[J]. Nanotechnology, 2007, 18(9): 095703. |
15 | 翟英娇, 李金华, 陈新影, 等. 镉掺杂氧化锌纳米花的制备及其光催化活性[J]. 中国光学, 2014, 7(1): 124-130. |
ZhaiY J, LiJ H, ChenX Y, et al. Preparation and photocatalytic activity of cadmium-doped zinc oxide nanoflowers[J]. China Optics, 2014, 7(1): 124-130. | |
16 | KolevaM E, AtanasovP A, NedialkovN N, et al. Role of vanadium content in ZnO thin films grown by pulsed laser deposition[J]. Applied Surface Science, 2007, 254(4): 1228-1231. |
17 | YimazS, ParlakM, ŞÖzcan, et al. Structural, optical and magnetic properties of Cr doped ZnO microrods prepared by spray pyrolysis method[J]. Applied Surface Science, 2011, 257(22): 9293-9298. |
18 | ShindeV R, GujarT P, LokhandeC D, et al. Mn doped and undoped ZnO films: a comparative structural, optical and electrical properties study[J]. Mater. Chem. Phys., 2006, 96: 326-330. |
19 | ShishodiaP K. Effect of cobalt doping on ZnO thin films deposited by sol-gel method[J]. Thin Solid Films, 2016, 612: 55-60. |
20 | ZhaoX, LiuE, RamanujanR V, et al. Effects of rapid thermal annealing on structural, magnetic and optical properties of Ni-doped ZnO thin films[J]. Current Applied Physics, 2012, 12(3): 834-840. |
21 | HouD L, YeX J, MengH J, et al. Magnetic properties of n-type Cu-doped ZnO thin films[J]. Applied Physics Letters, 2007, 90(14): 142502. |
22 | SrivastavaA, KumarN, KhareS. Enhancement in UV emission and band gap by Fe doping in ZnO thin films[J]. Opto-Electronics Review, 2014, 22(1): 68-76. |
23 | YiS S, CuiJ B, LiS, et al. Enhanced visible-light photocatalytic activity of Fe/ZnO for Rhodamine B degradation and its photogenerated charge transfer properties[J]. Applied Surface Science, 2014, 319: 230-236. |
24 | SalehR, DjajaN F. UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles[J]. Superlattices and Microstructures, 2014, 74: 217-233. |
25 | LmaiF, MoubahR, AmiriE A, et al. Spin wave study and optical properties in Fe-doped ZnO thin films prepared by spray pyrolysis technique[J]. Optical Materials, 2016, 57: 28-33. |
26 | WuX, WeiZ, ZhangL, et al. Optical and magnetic properties of Fe doped ZnO nanoparticles obtained by hydrothermal synthesis[J]. Journal of Nanomaterials, 2014, 2014: 1-6. |
27 | LiX, HouM, HanB, et al. Solubility of CO2 in a choline chloride+ urea eutectic mixture[J]. Journal of Chemical & Engineering Data, 2008, 53(2): 548-550. |
28 | AbbottA P, CullisP M, GibsonM J, et al. Extraction of glycerol from biodiesel into a eutectic based ionic liquid[J]. Green Chemistry, 2007, 9(8): 868-872. |
29 | PhadtareS B, ShankarlingG S. Halogenation reactions in biodegradable solvent: efficient bromination of substituted 1-aminoanthra-9, 10-quinone in deep eutectic solvent (choline chloride: urea) [J]. Green Chemistry, 2010, 12(3): 458-462. |
30 | HarishkumarH N, MahadevanK M, MasagalliJ N, et al. Synthesis and fluorescence study of phenylcoumarin / cyanophenylbenzocoumarin-3-carboxylates[J]. Organic Comm-unications, 2012, 5(4): 196-208. |
31 | PawaP M, JaragK J, ShankarlingG S. Environmentally benign and energy efficient methodology for condensation: an interesting facet to the classical Perkin reaction[J]. Green Chemistry, 2011, 13(8): 2130-2134. |
32 | SutrisnoA, LiuL, DongJ, et al. Solid-state 91Zr NMR characterization of layered and three-dimensional framework zirconium phosphates[J]. The Journal of Physical Chemistry C, 2012, 116(32): 17070-17081. |
33 | MaldonadoM, OleksiakM D, ChintaS, et al. Controlling crystal polymorphism in organic-free synthesis of Na-zeolites[J]. Journal of the American Chemical Society, 2013, 135(7): 2641-2652. |
34 | LiaoH G, JiangY X, ZhouZ Y, et al. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis[J]. Angewandte Chemie International Edition, 2008, 47(47): 9100-9103. |
35 | AbbottA P, CapperG, DaviesD L, et al. Selective extraction of metals from mixed oxide matrixes using choline-based ionic liquids[J]. Inorganic Chemistry, 2005, 44(19): 6497-6499. |
36 | DongJ Y, HsuY J, WongD S H, et al. Growth of ZnO nanostructures with controllable morphology using a facile green antisolvent method[J]. The Journal of Physical Chemistry C, 2010, 114(19): 8867-8872. |
37 | ShaktiN, GuptaP S. Structural and optical properties of sol-gel prepared ZnO thin film[J]. Applied Physics Research, 2010, 2(1): 19-28. |
38 | BundesmannC, AshkenovN, SchubertM, et al. Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li[J]. Applied Physics Letters, 2003, 83(10): 1974-1976. |
39 | WangJ B, HuangG J, ZhongX L, et al. Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles[J]. Applied Physics Letters, 2006, 88(25): 252502. |
40 | SinghP, KaushalA, KaurD. Mn-doped ZnO nanocrystalline thin films prepared by ultrasonic spray pyrolysis[J]. Journal of Alloys and Compounds, 2009, 471(1/2): 11-15. |
41 | KaramatS, RawatR S, LeeP, et al. Structural, elemental, optical and magnetic study of Fe doped ZnO and impurity phase formation[J]. Progress in Natural Science: Materials International, 2014, 24(2): 142-149. |
42 | RambuA P, NicaV, DobromirM. Influence of Fe-doping on the optical and electrical properties of ZnO films[J]. Superlattices and Microstructures, 2013, 59: 87-96. |
43 | CuiJ, SunJ, LiuX, et al. Fabrication of hierarchical flower-like porous ZnO nanostructures from layered ZnC2O4·3Zn(OH)2 and gas sensing properties[J]. Applied Surface Science, 2014, 308: 17-23. |
44 | RajaK, RameshP S, D. StructuralGeetha, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 131: 183-188. |
45 | MitraP, MondalS. Structural and morphological characterization of ZnO thin films synthesized by SILAR[J]. Progress in Theoretical and Applied Physics, 2013, 1: 17-31. |
46 | ParraP A, PeralesP O, SinghalR, et al. Structural, optical, and magnetic characterization of monodisperse Fe-doped ZnO nanocrystals[J]. Journal of Applied Physics, 2008, 103(7): 07D121. |
47 | 李奡麒, 陈玉娟, 胡晓宇, 等. 低共熔溶剂辅助水热法合成分层球状微/纳米 ZnO 晶体及其光催化性能[J]. 高等学校化学学报, 2015, 36(1): 165-170. |
LiW Q, ChenY J, HuX Y, et al. Synthesis of layered spherical micro/nano ZnO crystals by hydrothermal solvent-assisted hydrothermal method[J]. Chemical Journal of Chinese Universities, 2015, 36(1): 165-170. | |
48 | ZhangQ, LiuJ K, WangJ D, et al. Atmospheric self-induction synthesis and enhanced visible light photocatalytic performance of Fe3+ doped Ag-ZnO mesocrystals[J]. Ind. Eng. Chem. Res., 2014, 53:13236-13246 |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[3] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[4] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[5] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[6] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[7] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[8] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[9] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[10] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[11] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[12] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[13] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[14] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[15] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||