CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 607-616.DOI: 10.11949/j.issn.0438-1157.20181343
• Process system engineering • Previous Articles Next Articles
Yongfei XUE1(),Yalin WANG1(),Bei SUN1,Qianzhong LI2,Jiazhou SUN1
Received:
2018-11-15
Revised:
2018-11-21
Online:
2019-02-05
Published:
2019-02-05
Contact:
Yalin WANG
通讯作者:
王雅琳
作者简介:
<named-content content-type="corresp-name">薛永飞</named-content>(1988—),男,博士研究生,<email>xueyongfei@csu.edu.cn</email>|王雅琳(1973—),女,博士,教授,<email>ylwang@csu.edu.cn</email>
基金资助:
CLC Number:
Yongfei XUE, Yalin WANG, Bei SUN, Qianzhong LI, Jiazhou SUN. Improved state transfer algorithm-based kinetics parameter estimation for cascaded plug flow reactors[J]. CIESC Journal, 2019, 70(2): 607-616.
薛永飞, 王雅琳, 孙备, 李钱钟, 孙家舟. 基于改进状态转移算法的串级平推流反应器动力学参数估计[J]. 化工学报, 2019, 70(2): 607-616.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181343
物性名称 | 本文取值 |
---|---|
第1反应器中混合物的比定压热容 | 3.14 kJ?kg-1?K-1 |
第2反应器中混合物的比定压热容 | 2.48 kJ?kg-1?K-1 |
第3反应器中混合物的比定压热容 | 2.47 kJ?kg-1?K-1 |
第4反应器中混合物的比定压热容 | 2.26 kJ?kg-1?K-1 |
反应器级间冷氢的比定压热容 | 14.32 kJ?kg-1?K-1 |
加氢裂化反应平均放热系数Hr | 418.4 kJ?kg-1 |
第1反应器中混合物的密度ρ1 | 905 kg·m-3 |
第2反应器中混合物的密度ρ2 | 833 kg·m-3 |
第3反应器中混合物的密度ρ3 | 809.8 kg·m-3 |
第4反应器中混合物的密度ρ4 | 737.1 kg·m-3 |
Table 1 Physical property data used for estimating kinetics parameters of hydrocracking
物性名称 | 本文取值 |
---|---|
第1反应器中混合物的比定压热容 | 3.14 kJ?kg-1?K-1 |
第2反应器中混合物的比定压热容 | 2.48 kJ?kg-1?K-1 |
第3反应器中混合物的比定压热容 | 2.47 kJ?kg-1?K-1 |
第4反应器中混合物的比定压热容 | 2.26 kJ?kg-1?K-1 |
反应器级间冷氢的比定压热容 | 14.32 kJ?kg-1?K-1 |
加氢裂化反应平均放热系数Hr | 418.4 kJ?kg-1 |
第1反应器中混合物的密度ρ1 | 905 kg·m-3 |
第2反应器中混合物的密度ρ2 | 833 kg·m-3 |
第3反应器中混合物的密度ρ3 | 809.8 kg·m-3 |
第4反应器中混合物的密度ρ4 | 737.1 kg·m-3 |
反应速率常数 | 活化能Ei/(J·mol-1) | 指前因子ki0/s-1 |
---|---|---|
k1 | 95700.39 95700.39 95700.39 95700.39 95700.39 95700.39 | 4585.95 |
k2 | 2383.74 | |
k3 | 2373.56 | |
k4 | 417.33 | |
k5 | 39.32 | |
k6 | 97199.38 97199.38 97199.38 97199.38 | 473.33 |
k7 | 96.48 | |
k8 | 2.65×10-5 | |
k9 | 0 | |
k10 | 63753.57 63753.57 63753.57 | 0.20 |
k11 | 0 | |
k12 | 9.92×10-3 | |
k13 | 97292.32 97292.32 | 44.70 |
k14 | 0 | |
k15 | 8018.36 | 11.70×10-3 |
Table 2 Estimation results of kinetics parameters for hydrocracking reaction
反应速率常数 | 活化能Ei/(J·mol-1) | 指前因子ki0/s-1 |
---|---|---|
k1 | 95700.39 95700.39 95700.39 95700.39 95700.39 95700.39 | 4585.95 |
k2 | 2383.74 | |
k3 | 2373.56 | |
k4 | 417.33 | |
k5 | 39.32 | |
k6 | 97199.38 97199.38 97199.38 97199.38 | 473.33 |
k7 | 96.48 | |
k8 | 2.65×10-5 | |
k9 | 0 | |
k10 | 63753.57 63753.57 63753.57 | 0.20 |
k11 | 0 | |
k12 | 9.92×10-3 | |
k13 | 97292.32 97292.32 | 44.70 |
k14 | 0 | |
k15 | 8018.36 | 11.70×10-3 |
项目 | 标准STA | 改进STA (平均值) | 性能提升 (平均值)/% |
---|---|---|---|
寻优迭代次数 | 200 | 41.7 | 79.15 |
计算总耗时/s | 30477.12 | 6215.60 | 79.61 |
fitness调用耗时/s | 30378.39 | 6108.06 | 79.89 |
ode15 s调用耗时/s | 30416.73 | 6199.97 | 79.62 |
项目 | 标准STA | 改进STA (平均值) | 性能提升 (平均值)/% |
---|---|---|---|
寻优迭代次数 | 200 | 41.7 | 79.15 |
计算总耗时/s | 30477.12 | 6215.60 | 79.61 |
fitness调用耗时/s | 30378.39 | 6108.06 | 79.89 |
ode15 s调用耗时/s | 30416.73 | 6199.97 | 79.62 |
参数名称 | 取值 | 参数名称 | 取值 |
---|---|---|---|
伸缩算子γ | 1 | 迭代次数iter | 2.0×102 |
旋转算子α | (1/2)iterαmax | 误差满意阈值ξ | 3.0×10-2 |
旋转算子初值αmax | 1 | 活化能Ei上限 | 1.3×105 |
旋转算子终值αmin | 1.0×10-3 | 活化能Ei下限 | 6.0×103 |
轴向算子δ | 1 | 指前因子ki0上限 | 7.0×103 |
平移算子β | 1 | 指前因子ki0下限 | 0 |
状态个数SE | 30 | 所求问题状态维数 | 20 |
Table 4 Parameters setting of improved STA
参数名称 | 取值 | 参数名称 | 取值 |
---|---|---|---|
伸缩算子γ | 1 | 迭代次数iter | 2.0×102 |
旋转算子α | (1/2)iterαmax | 误差满意阈值ξ | 3.0×10-2 |
旋转算子初值αmax | 1 | 活化能Ei上限 | 1.3×105 |
旋转算子终值αmin | 1.0×10-3 | 活化能Ei下限 | 6.0×103 |
轴向算子δ | 1 | 指前因子ki0上限 | 7.0×103 |
平移算子β | 1 | 指前因子ki0下限 | 0 |
状态个数SE | 30 | 所求问题状态维数 | 20 |
预测项目 | 标准STA | 改进STA | ||
---|---|---|---|---|
MAE | MRE | MAE | MRE | |
尾油质量分数 | 0.001948 | 1.0627% | 0.002412 | 1.3155% |
柴油质量分数 | 0.001188 | 0.3069% | 0.001510 | 0.3899% |
航煤质量分数 | 0.000220 | 0.1089% | 0.000306 | 0.1513% |
重石质量分数 | 0.000455 | 0.2386% | 0.000629 | 0.3302% |
轻石质量分数 | 0.000260 | 1.6356% | 0.000339 | 2.1251% |
轻端质量分数 | 0.000280 | 1.3670% | 0.000378 | 1.8609% |
1反出口温度 | 0.076543 | 0.0113% | 0.111887 | 0.0166% |
2反出口温度 | 0.106760 | 0.0158% | 0.139421 | 0.0207% |
3反出口温度 | 0.109646 | 0.0162% | 0.143436 | 0.0212% |
4反出口温度 | 0.098496 | 0.0146% | 0.122468 | 0.0182% |
Table 5 Statistical error of 16 hydrocracking testing samples which are adjacent
预测项目 | 标准STA | 改进STA | ||
---|---|---|---|---|
MAE | MRE | MAE | MRE | |
尾油质量分数 | 0.001948 | 1.0627% | 0.002412 | 1.3155% |
柴油质量分数 | 0.001188 | 0.3069% | 0.001510 | 0.3899% |
航煤质量分数 | 0.000220 | 0.1089% | 0.000306 | 0.1513% |
重石质量分数 | 0.000455 | 0.2386% | 0.000629 | 0.3302% |
轻石质量分数 | 0.000260 | 1.6356% | 0.000339 | 2.1251% |
轻端质量分数 | 0.000280 | 1.3670% | 0.000378 | 1.8609% |
1反出口温度 | 0.076543 | 0.0113% | 0.111887 | 0.0166% |
2反出口温度 | 0.106760 | 0.0158% | 0.139421 | 0.0207% |
3反出口温度 | 0.109646 | 0.0162% | 0.143436 | 0.0212% |
4反出口温度 | 0.098496 | 0.0146% | 0.122468 | 0.0182% |
1 | SunB, GuiW H, WuT B, et al. An integrated prediction model of cobalt ion concentration based on oxidation-reduction potential[J]. Hydrometallurgy, 2013, 140: 102-110. |
2 | FuY, LiuX G. Nonlinear wave modeling and dynamic analysis of high-purity heat integrated air separation column[J]. Separation and Purification Technology, 2015, 151: 14-22. |
3 | SildirH, ArkunY, CakalB, et al. A dynamic non-isothermal model for a hydrocracking reactor: model development by the method of continuous lumping and application to an industrial unit[J]. Journal of Process Control, 2012, 22(10): 1956-1965. |
4 | SunB, GuiW H, WangY L, et al. A gradient optimization scheme for solution purification process[J]. Control Engineering Practice, 2015, 44: 89-103. |
5 | SunB, GuiW H, WangY L, et al. Intelligent optimal setting control of a cobalt removal process[J]. Journal of Process Control, 2014, 24(5): 586-599. |
6 | SildirH, ArkunY, CakalB, et al. Plant-wide hierarchical optimization and control of an industrial hydrocracking process[J]. Journal of Process Control, 2013, 23(9): 1229-1240. |
7 | LiY G, GuiW H, TeoK L, et al. Optimal control for zinc solution purification based on interacting CSTR models[J]. Journal of Process Control, 2012, 22(10): 1878-1889. |
8 | 李勇刚, 马蕾, 伍铁斌, 等. 多反应器级联的沉铁过程pH优化控制 [J]. 化工学报, 2018, 69(6): 2586-2593. |
LiY G, MaL, WuT B, et al. pH optimization and control in iron removal process of multi-reactor cascade[J]. CIESC Journal, 2018, 69(6): 2586-2593. | |
9 | BrooksK. Steady-state multiplicity in an adiabatic continuous stirred tank reactor with vapor recycle[J]. AIChE Journal, 2013, 59(2): 553-559. |
10 | 许瑜飞, 钱锋, 杨明磊, 等. 改进鲸鱼优化算法及其在渣油加氢参数优化的应用[J]. 化工学报, 2018, 69(3): 891-899. |
XuY F, QianF, YangM L, et al. Improved whale optimization algorithm and its application in optimization of residue hydrogenation parameters[J]. CIESC Journal, 2018, 69(3): 891-899. | |
11 | VrentasJ S, VrentasC M. Analysis of plug flow reactors with variable mass density[J]. AIChE Journal, 2014, 60(12): 4185-4189. |
12 | Del ValleY, VenayagamoorthyG K, MohagheghiS, et al. Particle swarm optimization: basic concepts, variants and applications in power systems[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(2): 171-195. |
13 | WangY, LiB, WeiseT, et al. Self-adaptive learning based particle swarm optimization[J]. Information Sciences, 2011, 181(20): 4515-4538. |
14 | 周红标, 乔俊飞. 混合多目标骨干粒子群优化算法在污水处理过程优化控制中的应用[J]. 化工学报, 2017, 68(9): 3511-3521. |
ZhouH B, QiaoJ F. Optimal control of wastewater treatment process using hybrid multi-objective barebones particle swarm optimization algorithm[J]. CIESC Journal, 2017, 68(9): 3511-3521. | |
15 | 韩红桂, 张璐, 乔俊飞. 基于多目标粒子群算法的污水处理智能优化控制[J]. 化工学报, 2017, 68(4): 1474-1481. |
HanH G, ZhangL, QiaoJ F. Intelligent optimal control for wastewater treatment based on multi-objective particle swarm algorithm[J]. CIESC Journal, 2017, 68(4): 1474-1481. | |
16 | DebK, PratapA, AgarwalS, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
17 | ZhangR D, TaoJ L, GaoF R. A new approach of Takagi-Sugeno fuzzy modeling using an improved genetic algorithm optimization for oxygen content in a coke furnace[J]. Industrial & Engineering Chemistry Research, 2016, 55(22): 6465-6474. |
18 | WangY, LiH X, HuangT W, et al. Differential evolution based on covariance matrix learning and bimodal distribution parameter setting[J]. Applied Soft Computing, 2014, 18: 232-247. |
19 | 赵敏华, 胡毅, 李金, 等. 使用博弈差分算法的电站锅炉高效低污染燃烧均衡优化[J]. 化工学报, 2017, 68(6): 2455-2464. |
ZhaoM H, HuY, LiJ, et al. Equilibrium optimization for high efficiency and low pollution combustion of power-generation boilers using game differential evolution algorithm[J]. CIESC Journal, 2017, 68(6): 2455-2464. | |
20 | OteizaP P, BrignoleN B. An evolutionary algorithm applied to inventory control for natural gasoline[J]. Industrial & Engineering Chemistry Research, 2016, 55(51): 13062-13073. |
21 | ZhouX J, YangC H, GuiW H. State transition algorithm[J]. Journal of Industrial and Management Optimization, 2012, 8(4): 1039-1056. |
22 | ZhouX J, ShiP, LimC C, et al. A dynamic state transition algorithm with application to sensor network localization[J]. Neurocomputing, 2018, 273: 237-250. |
23 | ZhouX J, GaoD Y, YangC H, et al. Discrete state transition algorithm for unconstrained integer optimization problems[J]. Neurocomputing, 2016, 173: 864-874. |
24 | HanJ, DongT X, ZhouX J, et al. State transition algorithm for constrained optimization problems[C]//Proceedings of the 33rd Chinese control conference. Nanjing, China: IEEE CPP, 2014: 7543-7548. |
25 | HanJ, YangC H, ZhouX J, et al. A two-stage state transition algorithm for constrained engineering optimization problems[J]. International Journal of Control Automation and Systems, 2018, 16(2): 522-534. |
26 | ZhouX J, YangC H, GuiW H. Nonlinear system identification and control using state transition algorithm[J]. Applied Mathematics and Computation, 2014, 226: 169-179. |
27 | 张凤雪, 阳春华, 周晓君, 等. 基于控制周期计算的锌液净化除铜过程优化控制[J]. 控制理论与应用, 2017, 34(10): 1388-1395. |
ZhangF X, YangC H, ZhouX J, et al. Optimal control based on control period calculation for copper removal process of zinc solution purification[J]. Control Theory & Applications, 2017, 34(10): 1388-1395. | |
28 | AhandaniM A. Opposition-based learning in the shuffled bidirectional differential evolution algorithm[J]. Swarm and Evolutionary Computation, 2016, 26: 64-85. |
29 | RahnamayanS, TizhooshH R, SalamaM M A. Opposition-based differential evolution[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 64-79. |
30 | LiQ Y, JiangQ Y, CaoZ K, et al. Modeling and simulation for the hydrocracking reactor[C]//Proceedings of the 27th Chinese control conference. Kunming: IEEE CPP, 2008: 204-208. |
31 | 王松汉. 石油化工设计手册 [M]. 北京: 化学工业出版社, 2002. |
WangS H. Petrochemical Design Manual[M]. Beijing: Chemical Industry Press, 2002. |
[1] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[4] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[5] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[6] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[7] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[8] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[9] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[10] | Huan ZHOU, Mengli ZHANG, Qing HAO, Si WU, Jie LI, Cunbing XU. Process mechanism and dynamic behaviors of magnesium sulfate type carnallite converting into kainite [J]. CIESC Journal, 2022, 73(9): 3841-3850. |
[11] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
[12] | Jing YANG, Zhenkang LIN, Jun TANG, Cheng FAN, Kening SUN. A review of fault characteristics, fault diagnosis and identification for lithium-ion battery systems [J]. CIESC Journal, 2022, 73(8): 3394-3405. |
[13] | Cong HE, Wenqi ZHONG, Guanwen ZHOU, Xi CHEN. Study on decomposition characteristics of cement raw meal in suspension furnace at high altitude [J]. CIESC Journal, 2022, 73(5): 2120-2129. |
[14] | Min WANG, Jinlan CHENG, Xin LI, Jingjing LU, Chongxin YIN, Hongqi DAI. Delignification mechanism study of acid hydrotropes [J]. CIESC Journal, 2022, 73(5): 2206-2221. |
[15] | Rongshan BI, Zhihui HAN, Shaohui TAO, Xiaoyan SUN, Shuguang XIANG. Recognizing historical operating conditions by determining the density peaks at kernel density estimation of heat diffusion [J]. CIESC Journal, 2022, 73(4): 1615-1622. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||