CIESC Journal ›› 2022, Vol. 73 ›› Issue (4): 1615-1622.DOI: 10.11949/0438-1157.20211615
• Process system engineering • Previous Articles Next Articles
Rongshan BI(),Zhihui HAN,Shaohui TAO(),Xiaoyan SUN,Shuguang XIANG()
Received:
2021-11-12
Revised:
2022-01-14
Online:
2022-04-25
Published:
2022-04-05
Contact:
Shaohui TAO,Shuguang XIANG
通讯作者:
陶少辉,项曙光
作者简介:
毕荣山(1974—),男,博士,副教授,基金资助:
CLC Number:
Rongshan BI, Zhihui HAN, Shaohui TAO, Xiaoyan SUN, Shuguang XIANG. Recognizing historical operating conditions by determining the density peaks at kernel density estimation of heat diffusion[J]. CIESC Journal, 2022, 73(4): 1615-1622.
毕荣山, 韩智慧, 陶少辉, 孙晓岩, 项曙光. 基于热扩散核密度确定密度峰值法的历史工况识别[J]. 化工学报, 2022, 73(4): 1615-1622.
项目 | 工况个数 | 每种工况的先验概率 | 每种工况下变量x1, x2, x3的平均值 | 相对偏差 |
---|---|---|---|---|
实际值 | 3 | 0.25 | 11.777,296.288,12.410 | — |
0.25 | 20.467,192.899,354.307 | — | ||
0.5 | 10.351,19.900,152.718 | — | ||
本文方法 | 3 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.25 | 20.467,192.899,354.307 | 0,0,0 | ||
0.5 | 10.351,19.900,152.718 | 0,0,0 | ||
K-均值法 (K = 3) | 3 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.25 | 20.467,192.899,354.307 | 0,0,0 | ||
0.5 | 10.351,19.900,152.718 | 0,0,0 | ||
K-均值法 (K = 4) | 4 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.136 | 21.4211,209.428,388.063 | 4.66,8.57,9.53 | ||
0.114 | 19.3326,173.233,314.144 | 5.54,10.2,11.34 | ||
0.5 | 10.3508,19.900,152.718 | 0,0,0 | ||
GMM(F-J)法 (K = 4) | 4 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.203 | 10.0372,15.8427,152.52 | -2.84,-19.7,0.01 | ||
0.25 | 20.467,192.899,354.307 | 0,0,0 | ||
0.297 | 10.5662,22.6857,152.853 | 1.88,13.03,-0.05 | ||
GMM(F-J)法 (K = 5) | 4 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.203 | 10.0372,15.8426,152.52 | -3.03,-20.39,-0.13 | ||
0.25 | 20.467,192.899,354.307 | 0,0,0 | ||
0.297 | 10.5662,22.6857,152.853 | 2.08,14,0.09 |
Table 1 Recognition results of simulation multiple operating modes
项目 | 工况个数 | 每种工况的先验概率 | 每种工况下变量x1, x2, x3的平均值 | 相对偏差 |
---|---|---|---|---|
实际值 | 3 | 0.25 | 11.777,296.288,12.410 | — |
0.25 | 20.467,192.899,354.307 | — | ||
0.5 | 10.351,19.900,152.718 | — | ||
本文方法 | 3 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.25 | 20.467,192.899,354.307 | 0,0,0 | ||
0.5 | 10.351,19.900,152.718 | 0,0,0 | ||
K-均值法 (K = 3) | 3 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.25 | 20.467,192.899,354.307 | 0,0,0 | ||
0.5 | 10.351,19.900,152.718 | 0,0,0 | ||
K-均值法 (K = 4) | 4 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.136 | 21.4211,209.428,388.063 | 4.66,8.57,9.53 | ||
0.114 | 19.3326,173.233,314.144 | 5.54,10.2,11.34 | ||
0.5 | 10.3508,19.900,152.718 | 0,0,0 | ||
GMM(F-J)法 (K = 4) | 4 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.203 | 10.0372,15.8427,152.52 | -2.84,-19.7,0.01 | ||
0.25 | 20.467,192.899,354.307 | 0,0,0 | ||
0.297 | 10.5662,22.6857,152.853 | 1.88,13.03,-0.05 | ||
GMM(F-J)法 (K = 5) | 4 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.203 | 10.0372,15.8426,152.52 | -3.03,-20.39,-0.13 | ||
0.25 | 20.467,192.899,354.307 | 0,0,0 | ||
0.297 | 10.5662,22.6857,152.853 | 2.08,14,0.09 |
项目 | 模态 | G/H比例 | 产品生产率 |
---|---|---|---|
第1组 | 1 | 50/50 | 7038 kg/h G和7038 kg/h H |
第2组 | 2 | 10/90 | 1048 kg/h G和12669 kg/h H |
第3组 | 3 | 90/10 | 10000 kg/h G 和1111 kg/h H |
第4组 | 4 | 50/50 | 最大生产率 |
第5组 | 3 | 90/10 | 10000 kg/h G 和1111 kg/h H |
Table 2 Mode selection of the TE process
项目 | 模态 | G/H比例 | 产品生产率 |
---|---|---|---|
第1组 | 1 | 50/50 | 7038 kg/h G和7038 kg/h H |
第2组 | 2 | 10/90 | 1048 kg/h G和12669 kg/h H |
第3组 | 3 | 90/10 | 10000 kg/h G 和1111 kg/h H |
第4组 | 4 | 50/50 | 最大生产率 |
第5组 | 3 | 90/10 | 10000 kg/h G 和1111 kg/h H |
项目 | 实际值 | 本文方法 | K-均值法(K = 4) | K-均值法(K = 5) | K-均值法(K = 6) | GMM(F-J)法(K ≥ 4) |
---|---|---|---|---|---|---|
工况个数 | 4 | 4 | 4 | 5 | 6 | 无法得到参数 |
每种工况的先验概率 | 0.2 | 0.2 | 0.2 | 0.2 | 0.06 | 无法得到参数 |
0.2 | 0.2 | 0.2 | 0.2 | 0.08 | ||
0.4 | 0.4 | 0.4 | 0.106 | 0.06 | ||
0.2 | 0.2 | 0.2 | 0.094 | 0.2 | ||
0.4 | 0.4 | |||||
0.2 |
Table 3 Recognition results of the number and probability of the TE multi-modal process
项目 | 实际值 | 本文方法 | K-均值法(K = 4) | K-均值法(K = 5) | K-均值法(K = 6) | GMM(F-J)法(K ≥ 4) |
---|---|---|---|---|---|---|
工况个数 | 4 | 4 | 4 | 5 | 6 | 无法得到参数 |
每种工况的先验概率 | 0.2 | 0.2 | 0.2 | 0.2 | 0.06 | 无法得到参数 |
0.2 | 0.2 | 0.2 | 0.2 | 0.08 | ||
0.4 | 0.4 | 0.4 | 0.106 | 0.06 | ||
0.2 | 0.2 | 0.2 | 0.094 | 0.2 | ||
0.4 | 0.4 | |||||
0.2 |
变量 | 本文方法 | K-均值法(K = 4) | ||||
---|---|---|---|---|---|---|
平均相对偏差 | 最大相对偏差 | 最小相对偏差 | 平均相对偏差 | 最大相对偏差 | 最小相对偏差 | |
D物料流量 | -0.081 | -0.4104 | -0.0225 | -0.0814 | -0.412 | -0.0225 |
回收流量 | 0.0912 | 0.2786 | 0.0062 | 0.0909 | 0.2778 | 0.0062 |
放空率 | -1.3681 | -4.748 | -0.9476 | -1.4371 | -4.9847 | -0.9567 |
反应器进料量 | 0.0645 | 0.1505 | 0.0357 | 0.0644 | 0.1503 | 0.0357 |
产品分离器压力 | -0.0043 | -0.0148 | -0.0014 | -0.0043 | -0.0148 | -0.0014 |
汽提塔温度 | 0.0189 | 0.2343 | 0.0613 | 0.0186 | 0.2337 | 0.0613 |
压缩机工作功率 | 0.1075 | 0.3217 | 0.0441 | 0.1071 | 0.3207 | 0.0441 |
反应器组分B流量 | -0.1046 | -0.4776 | -0.1074 | -0.1054 | -0.4799 | -0.1075 |
放空气体中G组分流量 | -0.0142 | -0.9356 | 0.1306 | -0.0173 | -0.9444 | 0.1305 |
产品中组分H流量 | -0.0424 | 0.4618 | 0.1825 | -0.0438 | 0.4597 | 0.1821 |
Table 4 Recognition results of TE multi-modal process variables
变量 | 本文方法 | K-均值法(K = 4) | ||||
---|---|---|---|---|---|---|
平均相对偏差 | 最大相对偏差 | 最小相对偏差 | 平均相对偏差 | 最大相对偏差 | 最小相对偏差 | |
D物料流量 | -0.081 | -0.4104 | -0.0225 | -0.0814 | -0.412 | -0.0225 |
回收流量 | 0.0912 | 0.2786 | 0.0062 | 0.0909 | 0.2778 | 0.0062 |
放空率 | -1.3681 | -4.748 | -0.9476 | -1.4371 | -4.9847 | -0.9567 |
反应器进料量 | 0.0645 | 0.1505 | 0.0357 | 0.0644 | 0.1503 | 0.0357 |
产品分离器压力 | -0.0043 | -0.0148 | -0.0014 | -0.0043 | -0.0148 | -0.0014 |
汽提塔温度 | 0.0189 | 0.2343 | 0.0613 | 0.0186 | 0.2337 | 0.0613 |
压缩机工作功率 | 0.1075 | 0.3217 | 0.0441 | 0.1071 | 0.3207 | 0.0441 |
反应器组分B流量 | -0.1046 | -0.4776 | -0.1074 | -0.1054 | -0.4799 | -0.1075 |
放空气体中G组分流量 | -0.0142 | -0.9356 | 0.1306 | -0.0173 | -0.9444 | 0.1305 |
产品中组分H流量 | -0.0424 | 0.4618 | 0.1825 | -0.0438 | 0.4597 | 0.1821 |
1 | 谭帅. 多模态过程统计建模及在线监测方法研究[D]. 沈阳: 东北大学, 2012. |
Tan S. Statistical modeling and online monitoring for multiple mode processes[D]. Shenyang: Northeastern University, 2012. | |
2 | 陈刚, 路殿坤. 黄金冶金原理与工艺[M]. 沈阳: 东北大学出版社, 1999. |
Chen G, Lu D K. Gold Metallurgy Principle and Technology [M]. Shenyang: Northeast University Press, 1999. | |
3 | Jia R X, Wang J, Zhou J L. Fault diagnosis of industrial process based on the optimal parametric t-distributed stochastic neighbor embedding[J]. Science China Information Sciences, 2020, 64(5): 1-3. |
4 | Le Q H, Verheijen P J T, Mampaey K E, et al. Non-linear data reconciliation for a partial nitritation (SHARON) reactor[J]. IFAC-PapersOnLine, 2016, 49(7): 1139-1144. |
5 | 李永明, 史旭东, 熊伟丽. 基于工况识别的污水处理过程多目标优化控制[J]. 化工学报, 2019, 70(11): 4325-4336. |
Li Y M, Shi X D, Xiong W L. Condition recognition based intelligent multi-objective optimal control for wastewater treatment[J]. CIESC Journal, 2019, 70(11): 4325-4336. | |
6 | Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J]. AIChE Journal, 2008, 54(7): 1811-1829. |
7 | Zhao S J, Zhang J, Xu Y M. Performance monitoring of processes with multiple operating modes through multiple PLS models[J]. Journal of Process Control, 2006, 16(7): 763-772. |
8 | Cao Y, Jan N M, Huang B, et al. Multimodal process monitoring based on variational Bayesian PCA and Kullback-Leibler divergence between mixture models[J]. Chemometrics and Intelligent Laboratory Systems, 2021, 210: 104230. |
9 | Zhang Z, Deng X G. Anomaly detection using improved deep SVDD model with data structure preservation[J]. Pattern Recognition Letters, 2021, 148: 1-6. |
10 | Lee J M, Yoo C, Lee I B. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14(5): 467-485. |
11 | Tan S, Wang F L, Peng J, et al. Multimode process monitoring based on mode identification[J]. Industrial & Engineering Chemistry Research, 2012, 51(1): 374-388. |
12 | Xie X, Shi H B. Multimode process monitoring based on fuzzy C-means in locality preserving projection subspace[J]. Chinese Journal of Chemical Engineering, 2012, 20(6): 1174-1179. |
13 | 郭金玉, 袁堂明, 李元. 一种不等长的多模态间歇过程故障检测方法[J]. 化工学报, 2016, 67(7): 2916-2924. |
Guo J Y, Yuan T M, Li Y. Fault detection method for uneven-length multimode batch processes[J]. CIESC Journal, 2016, 67(7): 2916-2924. | |
14 | Zhu J L, Ge Z Q, Song Z H. Distributed Gaussian mixture model for monitoring plant-wide processes with multiple operating modes[J]. IFAC Journal of Systems and Control, 2018, 6: 1-15. |
15 | Choi S W, Park J H, Lee I B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis[J]. Computers & Chemical Engineering, 2004, 28(8): 1377-1387. |
16 | Dong J, Zhang C, Peng K X. A new multimode process monitoring method based on a hierarchical Dirichlet process—Hidden semi-Markov model with application to the hot steel strip mill process[J]. Control Engineering Practice, 2021, 110: 104767. |
17 | Zhang J X, Zhou D H, Chen M Y. Monitoring multimode processes: a modified PCA algorithm with continual learning ability[J]. Journal of Process Control, 2021, 103: 76-86. |
18 | Khediri I B, Weihs C, Limam M. Kernel k-means clustering based local support vector domain description fault detection of multimodal processes[J]. Expert Systems with Applications, 2012, 39(2): 2166-2171. |
19 | Huang T, Peng H, Zhang K. Model selection for Gaussian mixture models[J]. Statistica Sinica, 2017, 27(1): 147-169. |
20 | Karlis D, Xekalaki E. Choosing initial values for the EM algorithm for finite mixtures[J]. Computational Statistics & Data Analysis, 2003, 41(3/4): 577-590. |
21 | Figueiredo M A T, Jain A K. Unsupervised learning of finite mixture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 381-396. |
22 | Paalanen P, Kamarainen J K, Ilonen J, et al. Feature representation and discrimination based on Gaussian mixture model probability densities—practices and algorithms[J]. Pattern Recognition, 2006, 39(7): 1346-1358. |
23 | Rodriguez A, Laio A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. |
24 | Mehmood R, Zhang G Z, Bie R F, et al. Clustering by fast search and find of density peaks via heat diffusion[J]. Neurocomputing, 2016, 208: 210-217. |
25 | Xiao J, Xu Q Q, Wu C L, et al. Performance evaluation of missing-value imputation clustering based on a multivariate Gaussian mixture model[J]. PLoS One, 2016, 11(8): e0161112. |
26 | Ma S, Sun S G, Wang B J, et al. Estimating load spectra probability distributions of train bogie frames by the diffusion-based kernel density method[J]. International Journal of Fatigue, 2020, 132: 105352. |
27 | Ge Z Q, Song Z H. Multimode process monitoring based on Bayesian method[J]. Journal of Chemometrics, 2009: 23(12):636-650. |
28 | 解翔, 侍洪波. 多模态化工过程的全局监控策略[J]. 化工学报, 2012, 63(7): 2156-2162. |
Xie X, Shi H B. Global monitoring strategy for multimode chemical processes[J]. CIESC Journal, 2012, 63(7): 2156-2162. | |
29 | Downs J J, Vogel E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3): 245-255. |
30 | Ricker N L. Optimal steady-state operation of the Tennessee Eastman challenge process[J]. Computers & Chemical Engineering, 1995, 19(9): 949-959. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 458
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 444
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||