CIESC Journal ›› 2019, Vol. 70 ›› Issue (S1): 202-210.DOI: 10.11949/j.issn.0438-1157.20181393
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Siyu PENG1(),Cheng ZHENG1,2(),Taoyan MAO1,Yuan WEI1,Huafeng SONG1
Received:
2018-11-21
Revised:
2018-11-26
Online:
2019-03-31
Published:
2019-03-31
Contact:
Cheng ZHENG
通讯作者:
郑成
作者简介:
<named-content content-type="corresp-name">彭思玉</named-content>(1994—),女,硕士研究生,<email>575570774@qq.com</email>|郑成(1955—),男,博士,教授,<email>zhengcheng5512@163.com</email>
基金资助:
CLC Number:
Siyu PENG, Cheng ZHENG, Taoyan MAO, Yuan WEI, Huafeng SONG. Microwave synthesis and properties of dioctadecyl tetrahydroxyethyl dibromopropane diammonium[J]. CIESC Journal, 2019, 70(S1): 202-210.
彭思玉, 郑成, 毛桃嫣, 魏渊, 宋华峰. 双十八烷基四羟乙基二溴丙二铵的微波合成及其性能研究[J]. 化工学报, 2019, 70(S1): 202-210.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181393
溶剂 | 收率/% |
---|---|
乙醇 | 53.14 |
正丙醇 | 56.26 |
异丙醇 | 48.93 |
甲醇 | 59.15 |
正丁醇 | 64.54 |
Table 1 Effect of different solvents on product yield
溶剂 | 收率/% |
---|---|
乙醇 | 53.14 |
正丙醇 | 56.26 |
异丙醇 | 48.93 |
甲醇 | 59.15 |
正丁醇 | 64.54 |
水平 | A(功率)/W | B(反应时间)/ h | C(温度)/℃ |
---|---|---|---|
1 | 700 | 6 | 130 |
2 | 800 | 7 | 140 |
3 | 900 | 8 | 150 |
Table 2 Factors and levels of orthogonal experiments
水平 | A(功率)/W | B(反应时间)/ h | C(温度)/℃ |
---|---|---|---|
1 | 700 | 6 | 130 |
2 | 800 | 7 | 140 |
3 | 900 | 8 | 150 |
实验号 | A | B | C | 收率/ % | |
---|---|---|---|---|---|
1 | 700 | 6 | 130 | 90.11 | |
2 | 700 | 7 | 140 | 91.83 | |
3 | 700 | 8 | 150 | 90.72 | |
4 | 800 | 6 | 140 | 92.03 | |
5 | 800 | 7 | 150 | 90.74 | |
6 | 800 | 8 | 130 | 92.04 | |
7 | 900 | 6 | 150 | 92.27 | |
8 | 900 | 7 | 130 | 92.00 | |
9 | 900 | 8 | 140 | 92.22 | |
K1 | 272.66 | 274.41 | 274.15 | ||
K2 | 274.81 | 274.57 | 276.08 | ||
K3 | 276.49 | 274.98 | 273.73 | ||
k1 | 90.89 | 91.47 | 91.38 | ||
k2 | 91.6 | 91.52 | 92.03 | ||
k3 | 92.16 | 91.66 | 91.24 | ||
极差R | 3.83 | 0.57 | 2.35 | ||
因素:主→次 | A→C→B | ||||
最优方案 | A3B3C2 900 W, 8 h, 140℃ | ||||
重复实验 | 平均收率: 92.38% |
Table 3 Program and result of orthogonal experiments
实验号 | A | B | C | 收率/ % | |
---|---|---|---|---|---|
1 | 700 | 6 | 130 | 90.11 | |
2 | 700 | 7 | 140 | 91.83 | |
3 | 700 | 8 | 150 | 90.72 | |
4 | 800 | 6 | 140 | 92.03 | |
5 | 800 | 7 | 150 | 90.74 | |
6 | 800 | 8 | 130 | 92.04 | |
7 | 900 | 6 | 150 | 92.27 | |
8 | 900 | 7 | 130 | 92.00 | |
9 | 900 | 8 | 140 | 92.22 | |
K1 | 272.66 | 274.41 | 274.15 | ||
K2 | 274.81 | 274.57 | 276.08 | ||
K3 | 276.49 | 274.98 | 273.73 | ||
k1 | 90.89 | 91.47 | 91.38 | ||
k2 | 91.6 | 91.52 | 92.03 | ||
k3 | 92.16 | 91.66 | 91.24 | ||
极差R | 3.83 | 0.57 | 2.35 | ||
因素:主→次 | A→C→B | ||||
最优方案 | A3B3C2 900 W, 8 h, 140℃ | ||||
重复实验 | 平均收率: 92.38% |
合成方法 | 反应时间/h | 收率/% |
---|---|---|
微波反应法 | 4 | 64.54 |
传统加热法 | 8 | 36.51 |
Table 4 Comparison of various techniques
合成方法 | 反应时间/h | 收率/% |
---|---|---|
微波反应法 | 4 | 64.54 |
传统加热法 | 8 | 36.51 |
样品 | 乳化时间 | ||
---|---|---|---|
煤油 | 苯 | 松节油 | |
DTDD | 7 min 47 s | 32 min10 s | 1 h 20 min |
OMDAB | 7 min10 s | 19 min 6 s | 1 h 2 min |
Table 5 Emulsification time of various surfactant solutions for various lubricating oil phases
样品 | 乳化时间 | ||
---|---|---|---|
煤油 | 苯 | 松节油 | |
DTDD | 7 min 47 s | 32 min10 s | 1 h 20 min |
OMDAB | 7 min10 s | 19 min 6 s | 1 h 2 min |
样品 | 泡沫高度/cm | 泡沫稳定性/% | |
---|---|---|---|
0min | 5min | ||
DTDD | 15.9 | 15.1 | 95.0 |
OMDAB | 10.1 | 9.0 | 89.1 |
Table 6 Foam performance test results for different surfactants
样品 | 泡沫高度/cm | 泡沫稳定性/% | |
---|---|---|---|
0min | 5min | ||
DTDD | 15.9 | 15.1 | 95.0 |
OMDAB | 10.1 | 9.0 | 89.1 |
1 | JiX, TianM, WangY. Temperature-induced aggregate transitions in mixtures of cationic ammonium gemini surfactant with anionic glutamic acid surfactant in aqueous solution[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2016, 32(4): 972-981. |
2 | MobinM, AslamR, AslamJ. Non toxic biodegradable cationic gemini surfactants as novel corrosion inhibitor for mild steel in hydrochloric acid medium and synergistic effect of sodium salicylate: experimental and theoretical approach[J]. Materials Chemistry & Physics, 2017, 191: 151-167. |
3 | ZhouY, WangZ, HursthouseA, et al. Gemini surfactant-modified activated carbon for remediation of hexavalent chromium from water[J]. Water, 2018, 10(1): 91. |
4 | BrunsveldL, SchillJ, van DunS, et al. Synthesis and self-assembly of bay-substituted perylene diimide gemini-type surfactants as off-on fluorescent probes for lipid bilayers[J]. Chemistry - A European Journal, 2018, 24(30): 7734-7741. |
5 | KumarA, BanjareM K, SinhaS, et al. Imidazolium-based ionic liquid as modulator of physicochemical properties of cationic, anionic, nonionic, and gemini surfactants[J]. Journal of Surfactants & Detergents, 2018, 21(3): 355-366. |
6 | AsadovZ H, AhmadovaG A, RahimovR A, et al. Effect of spacer nature on surface properties of new counterion coupled gemini surfactants based on dodecyldiisopropylol amine and dicarboxylic acids[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018, 550: 115-122. |
7 | El-SaidW A, MoharramA S, HusseinE M, et al. Design, synthesis, anticorrosion efficiency, and applications of novel Gemini surfactants for preparation of small-sized hollow spheres mesoporous silica nanoparticles[J]. Materials Chemistry & Physics, 2018, 211: 123-136. |
8 | 聂红艳, 徐宝财, 周雅文. 特种表面活性剂和功能性表面活性剂(Ⅵ): 双子表面活性剂的性质及应用[J]. 日用化学工业, 2009, 39(5): 348-353. |
NieH Y, XuB C, ZhouY W. Special surfactants and functional surfactants(Ⅵ): Properties and application of gemini surfactants[J]. China Surfactant Detergent & Cosmetics, 2009, 39(5): 348-353. | |
9 | 高阳, 刘佳. 单链型苯并咪唑阳离子与双子型苯并咪唑阳离子表面活性剂的性能比较[J]. 工程技术研究, 2017, (6): 241-242. |
GaoY, LiuJ. Comparison of the properties of benzimidazole cationic imidazoles and benzimidazole cationic surfactants[J]. Engineering and Technological Research, 2017, (6): 241-242. | |
10 | FaureD, GravierJ, LabrotT, et al. Photoinduced morphism of gemini surfactant aggregates[J]. Chemical Communications, 2005, (9): 1167-1169. |
11 | ChangH, WangY, CuiY, et al. Equilibrium and dynamic surface tension properties of Gemini quaternary ammonium salt surfactants with hydroxyl[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2016, 500: 230-238. |
12 | XuQ, WangL, XingF. Synthesis and properties of dissymmetric gemini surfactants[J]. Journal of Surfactants & Detergents, 2011, 14(1): 85-90. |
13 | 卢庆祥, 傅式洲, 尹宝霖, 等. 季铵盐型双子表面活性剂的合成和性能[J]. 日用化学工业, 2009, 39(2): 81-84. |
LuQ X, FuS Z, YinB L, et al. Synthesis and properties of quaternary ammonium Gemini surfactants[J]. China Surfactant Detergent & Cosmetics, 2009, 39(2): 81-84. | |
14 | 郭乃妮, 郑敏燕, 杨连利. 季铵盐阳离子双酯表面活性剂CDESA的合成研究[J]. 化学研究与应用, 2018, 30(1): 105-109. |
GuoN N, ZhengM Y, YangL L. Research on synthesis of quaternary ammonium salt cationic diester surfactants CDESA[J]. Chemical Research and Application, 2018, 30(1): 105-109. | |
15 | NeochoritisC G, ZarganestzitzikasT, TsoleridisC A, et al. One-pot microwave assisted synthesis under green chemistry conditions, antioxidant screening, and cytotoxicity assessments of benzimidazole Schiff bases and pyrimido[1,2-a]benzimidazol-3(4H)-ones[J]. European Journal of Medicinal Chemistry, 2011, 46(1): 297-306. |
16 | 毛展. 微波辅助非均相催化剂用于绿色有机合成的研究[D]. 上海: 上海师范大学, 2016. |
MaoZ. Microwave-assisted heterogeneous catalysts for green organic synthesis[D]. Shanghai: Shanghai Normal University, 2016. | |
17 | 胡雪原. 离子液体和微波技术在绿色有机合成中的应用[D]. 新乡: 河南师范大学, 2005. |
HuX Y. Application of ionic liquid and microwave technology in green organic synthesis[D]. Xinxiang: Henan Normal University, 2005. | |
18 | ErganB T, BayramogluM. Investigation of the microwave effect: a new approach for the solvent effect on the microwave-assisted decomposition reaction of 2,2′-azobis(isobutyronitrile)[J]. Industrial & Engineering Chemistry Research, 2014, 53(33): 13016-13022. |
19 | LinJ, ZhuM, WuX, et al. Microwave-assisted synthesis of trisiloxane superspreader and its superspreading behavior on plant leaves surfaces[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2016, 511: 190-200. |
20 | UmraoS, GuptaT K, KumarS, et al. Microwave-assisted synthesis of boron and nitrogen co-doped reduced graphene oxide for the protection of electromagnetic radiation in Ku-band[J]. ACS Applied Materials & Interfaces, 2015, 7(35): 19831-19842. |
21 | 韦星船, 郑成, 刘晓国, 等. 一种季铵盐双子表面活性剂的微波合成及性能研究[J]. 化学研究与应用, 2009, 21(3): 338-343. |
WeiX C, ZhengC, LiuX G, et al. Microwave synthesis and properties of a quaternary ammonium Gemini surfactant[J]. Chemical Research and Application, 2009, 21(3): 338-343. | |
22 | 孙莉, 张强, 李春义, 等. 双子季铵盐的静态合成及表征[J]. 化学试剂, 2015, 37(10): 913-915. |
ShunL, ZhangQ, LiC Y, et al. Static synthesis and characterization of cationic Gemini surfactants[J]. Chemical Reagents, 2015, 37(10): 913-915. | |
23 | 程文静, 郑成, 毛桃嫣, 等. 十八烷基甲基二羟乙基溴化铵的微波合成及性能[J]. 化工学报, 2011, 62(2): 566-573. |
ChengW J, ZhengC, MaoT Y, et al. Microwave synthesis technique and properties of octadecylmethyldihydroxyethyl ammonium bromide[J]. CIESC Journal, 2011, 62(2): 566-573. | |
24 | 于涛, 刘华沙, 王超群, 等. 烷基芳基磺酸钠对烷烃的乳化性能[J]. 应用化学, 2011, 28(5): 560-564. |
YuT, LiuH S, WangC Q, et al. Sodium alkyl sulfonate emulsifying performance on alkanes[J]. Chinese Journal of Applied Chemistry, 2011, 28(5): 560-564. | |
25 | 吕彤. 表面活性剂合成技术[M]. 北京: 化学工业出版社, 2016: 133. |
LyuT. Surfactant Synthesis Technology[M]. Beijing: Chemical Industry Press, 2016: 133. | |
26 | BekrekV, NevecnT. A study of effect of temperature on the influence of medium on the reaction of triethylamine with ethyl iodide[J]. Collection of Czechoslovak Chemical Communications, 1991, 56(4): 874-879. |
27 | 冯刚. 微波辅助有机反应及微波合成中的“非热效应”研究[D]. 重庆: 重庆大学, 2009. |
FengG. Microwave-assisted organic reactions and “non-thermal effects” in microwave synthesis[D]. Chongqing: Chongqing University, 2009. | |
28 | AlcaldeM A, JoverA, MeijideF, et al. Synthesis and characterization of a new gemini surfactant derived from 3α,12α-dihydroxy-5β-cholan-24-amine (steroid residue) and ethylenediamintetraacetic acid (spacer)[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2008, 24(12): 6060-6066. |
29 | HanL, YeZ, ChenH, et al. The interfacial tension between cationic gemini surfactant solution and crude oil[J]. Journal of Surfactants & Detergents, 2009, 12(3): 185-190. |
30 | 李晓萍, 金向军. Gemini表面活性剂的结构特性及其应用[J]. 白城师范学院学报, 2006, 20(4): 29-31. |
LiX P, JinX J. Structural properties of Gemini surfactants and their applications[J]. Journal of Baicheng Normal University, 2006, 20(4): 29-31. | |
31 | 王丽艳, 赵明, 邢凤兰, 等. 双子表面活性剂[M]. 北京: 化学工业出版社, 2013: 33. |
WangL Y, ZhaoM, XingF L, et al. Gemini Surfactants[M]. Beijing: Chemical Industry Press, 2013: 33. |
[1] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[2] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[3] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[4] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[5] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[6] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[7] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[8] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[9] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[10] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[11] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[12] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[13] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[14] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[15] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||