CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1804-1814.DOI: 10.11949/j.issn.0438-1157.20181449
• Separation engineering • Previous Articles Next Articles
Liangjie JIN(),Peng BAI(),Xianghai GUO
Received:
2018-12-05
Revised:
2019-02-25
Online:
2019-05-05
Published:
2019-05-05
Contact:
Peng BAI
通讯作者:
白鹏
作者简介:
<named-content content-type="corresp-name">金靓婕</named-content>(1986—),女,博士研究生,<email>jinliangjie868@sina.com</email>|白鹏(1961—),男,博士,教授,<email>Chemeng114_tju@163.com</email>
基金资助:
CLC Number:
Liangjie JIN, Peng BAI, Xianghai GUO. Energy-saving optimization of partial diabatic distillation with side streams[J]. CIESC Journal, 2019, 70(5): 1804-1814.
金靓婕, 白鹏, 郭翔海. 带有侧线采出回流的部分透热精馏的节能优化[J]. 化工学报, 2019, 70(5): 1804-1814.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181449
参数 | 参数值 |
---|---|
进料量/(mol·s–1) | 10 |
进料轻组分摩尔浓度 | 0.2 |
塔顶轻组分摩尔浓度 | ≥0.95 |
塔底重组分摩尔浓度 | ≥0.90 |
总热负荷/W | 564308 |
回流比 | 6 |
理论塔板数 | 25 |
进料板 | 14 |
每板持液量/mol | 1 |
塔顶冷凝罐持液量/mol | 10 |
塔底加热罐持液量/mol | 60 |
操作压力/kPa | 101.3 |
Table 1 Operating conditions and column specifications
参数 | 参数值 |
---|---|
进料量/(mol·s–1) | 10 |
进料轻组分摩尔浓度 | 0.2 |
塔顶轻组分摩尔浓度 | ≥0.95 |
塔底重组分摩尔浓度 | ≥0.90 |
总热负荷/W | 564308 |
回流比 | 6 |
理论塔板数 | 25 |
进料板 | 14 |
每板持液量/mol | 1 |
塔顶冷凝罐持液量/mol | 10 |
塔底加热罐持液量/mol | 60 |
操作压力/kPa | 101.3 |
因子 | 代码 | 编码水平 | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
N rem2 | A | 3 | 7 | 11 |
η rem | B | 0.7 | 0.85 | 1 |
V rem/(mol·s–1) | C | 5 | 7 | 9 |
Table 2 Range of different factors investigated with Box-Behnken design
因子 | 代码 | 编码水平 | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
N rem2 | A | 3 | 7 | 11 |
η rem | B | 0.7 | 0.85 | 1 |
V rem/(mol·s–1) | C | 5 | 7 | 9 |
试验号 | A | B | C | Y 1/ (J·s–1) | Y 2 / (J·s–1) | Y 3/ (J·s–1) | Y 4 |
---|---|---|---|---|---|---|---|
A` | B` | C` | |||||
1 | 0 | 0 | 0 | 18091 | 20.2 | 21939 | 0.9465 |
2 | 0 | -1 | 1 | 17802 | 233.2 | 21973 | 0.9493 |
3 | –1 | –1 | 0 | 18042 | 264.5 | 21834 | 0.9412 |
4 | 0 | 1 | 1 | 15937 | –265.1 | 21837 | 0.9365 |
5 | 0 | 1 | –1 | 18876 | –136.8 | 21974 | 0.9445 |
6 | 1 | 1 | 0 | 17436 | –59.7 | 22069 | 0.9500 |
7 | –1 | 1 | 0 | 16837 | –210.4 | 21623 | 0.9241 |
8 | 1 | 0 | 1 | 17147 | 14.3 | 22052 | 0.9530 |
9 | –1 | 0 | –1 | 18648 | 59.4 | 21825 | 0.9399 |
10 | 1 | 0 | –1 | 19698 | 372.2 | 22095 | 0.9554 |
11 | –1 | 0 | 1 | 16408 | –12.3 | 21608 | 0.9274 |
12 | 0 | –1 | –1 | 20117 | 278.6 | 22060 | 0.9543 |
13 | 0 | 0 | 0 | 18091 | 20.2 | 21939 | 0.9465 |
14 | 1 | –1 | 0 | 19125 | 365.2 | 22123 | 0.9579 |
15 | 0 | 0 | 0 | 18091 | 20.2 | 21939 | 0.9465 |
Table 3 Box-Behnken design and response values
试验号 | A | B | C | Y 1/ (J·s–1) | Y 2 / (J·s–1) | Y 3/ (J·s–1) | Y 4 |
---|---|---|---|---|---|---|---|
A` | B` | C` | |||||
1 | 0 | 0 | 0 | 18091 | 20.2 | 21939 | 0.9465 |
2 | 0 | -1 | 1 | 17802 | 233.2 | 21973 | 0.9493 |
3 | –1 | –1 | 0 | 18042 | 264.5 | 21834 | 0.9412 |
4 | 0 | 1 | 1 | 15937 | –265.1 | 21837 | 0.9365 |
5 | 0 | 1 | –1 | 18876 | –136.8 | 21974 | 0.9445 |
6 | 1 | 1 | 0 | 17436 | –59.7 | 22069 | 0.9500 |
7 | –1 | 1 | 0 | 16837 | –210.4 | 21623 | 0.9241 |
8 | 1 | 0 | 1 | 17147 | 14.3 | 22052 | 0.9530 |
9 | –1 | 0 | –1 | 18648 | 59.4 | 21825 | 0.9399 |
10 | 1 | 0 | –1 | 19698 | 372.2 | 22095 | 0.9554 |
11 | –1 | 0 | 1 | 16408 | –12.3 | 21608 | 0.9274 |
12 | 0 | –1 | –1 | 20117 | 278.6 | 22060 | 0.9543 |
13 | 0 | 0 | 0 | 18091 | 20.2 | 21939 | 0.9465 |
14 | 1 | –1 | 0 | 19125 | 365.2 | 22123 | 0.9579 |
15 | 0 | 0 | 0 | 18091 | 20.2 | 21939 | 0.9465 |
方差来源 | 自由度 | 平方和 | 均方 | F | P | |||||
---|---|---|---|---|---|---|---|---|---|---|
Y 1 | Y 2 | Y 1 | Y 2 | Y 1 | Y 2 | Y 1 | Y 2 | Y 1 | Y 2 | |
回归模型 | 8 | 5 | 19029991 | 541586 | 2378749 | 108317 | 415.57 | 79.28 | 0.0000 | 0.0000 |
线性 | 3 | 3 | 18618733 | 500225 | 6206244 | 166742 | 1084.24 | 122.04 | 0.0000 | 0.0000 |
平方 | 2 | 1 | 231169 | 20884 | 115585 | 20884 | 20.19 | 15.29 | 0.0022 | 0.0036 |
交互作用 | 3 | 1 | 180088 | 20478 | 60029 | 20478 | 10.49 | 14.99 | 0.0084 | 0.0038 |
误差 | 6 | 9 | 34344 | 12296 | 5724 | 1366 | ||||
合计 | 14 | 14 | 19064335 | 553883 |
Table 4 Analysis of variance of Box-Behnken design(Y 1,Y 2)
方差来源 | 自由度 | 平方和 | 均方 | F | P | |||||
---|---|---|---|---|---|---|---|---|---|---|
Y 1 | Y 2 | Y 1 | Y 2 | Y 1 | Y 2 | Y 1 | Y 2 | Y 1 | Y 2 | |
回归模型 | 8 | 5 | 19029991 | 541586 | 2378749 | 108317 | 415.57 | 79.28 | 0.0000 | 0.0000 |
线性 | 3 | 3 | 18618733 | 500225 | 6206244 | 166742 | 1084.24 | 122.04 | 0.0000 | 0.0000 |
平方 | 2 | 1 | 231169 | 20884 | 115585 | 20884 | 20.19 | 15.29 | 0.0022 | 0.0036 |
交互作用 | 3 | 1 | 180088 | 20478 | 60029 | 20478 | 10.49 | 14.99 | 0.0084 | 0.0038 |
误差 | 6 | 9 | 34344 | 12296 | 5724 | 1366 | ||||
合计 | 14 | 14 | 19064335 | 553883 |
项目 | 热负荷/W | x D | x B | D/ (mol·s–1) | E XL/ (J·s–1) | |||
---|---|---|---|---|---|---|---|---|
塔顶 冷凝器 | 中间 冷凝器 | 塔底 再沸器 | 中间 再沸器 | |||||
常规精馏(绝热精馏) | –455650 | 0 | 564308 | 0 | 0.9701 | 0.9466 | 1.5997 | 24006 |
仅含中间冷凝器(第13块板)的部分透热精馏 | –143530 | –313910 | 564308 | 0 | 0.9891 | 0.9006 | 1.1305 | 19060 |
带有侧线采出回流的精馏段部分冷凝精馏 | –143530 | –313910 | 564308 | 0 | 0.9861 | 0.9002 | 1.1303 | 16999 |
仅含中间再沸器(第19块板)的部分透热精馏 | –456630 | 0 | 309593 | 254715 | 0.9588 | 0.9444 | 1.5989 | 22959 |
带有侧线采出回流的提馏段部分再沸精馏 | –455620 | 0 | 309593 | 254715 | 0.9501 | 0.9427 | 1.5987 | 21983 |
Table 7 Comparison of thermodynamic and separation properties with adiabatic and diabatic distillation
项目 | 热负荷/W | x D | x B | D/ (mol·s–1) | E XL/ (J·s–1) | |||
---|---|---|---|---|---|---|---|---|
塔顶 冷凝器 | 中间 冷凝器 | 塔底 再沸器 | 中间 再沸器 | |||||
常规精馏(绝热精馏) | –455650 | 0 | 564308 | 0 | 0.9701 | 0.9466 | 1.5997 | 24006 |
仅含中间冷凝器(第13块板)的部分透热精馏 | –143530 | –313910 | 564308 | 0 | 0.9891 | 0.9006 | 1.1305 | 19060 |
带有侧线采出回流的精馏段部分冷凝精馏 | –143530 | –313910 | 564308 | 0 | 0.9861 | 0.9002 | 1.1303 | 16999 |
仅含中间再沸器(第19块板)的部分透热精馏 | –456630 | 0 | 309593 | 254715 | 0.9588 | 0.9444 | 1.5989 | 22959 |
带有侧线采出回流的提馏段部分再沸精馏 | –455620 | 0 | 309593 | 254715 | 0.9501 | 0.9427 | 1.5987 | 21983 |
因子 | 代码 | 编码水平 | ||
---|---|---|---|---|
–1 | 0 | 1 | ||
N add2 | A` | 15 | 16 | 17 |
Q add/W | B` | 235128 | 282154 | 329180 |
V add/(mol·s–1) | C` | 5 | 7 | 9 |
Table 5 Range of different factors investigated with Box-Behnken design
因子 | 代码 | 编码水平 | ||
---|---|---|---|---|
–1 | 0 | 1 | ||
N add2 | A` | 15 | 16 | 17 |
Q add/W | B` | 235128 | 282154 | 329180 |
V add/(mol·s–1) | C` | 5 | 7 | 9 |
方差来源 | 自由度 | 平方和 | 均方 | F | P | |||||
---|---|---|---|---|---|---|---|---|---|---|
Y 3 | Y 4 | Y 3 | Y 4 | Y 3 | Y 4 | Y 3 | Y 4 | Y 3 | Y 4 | |
回归模型 | 9 | 9 | 370772 | 1.33×10–3 | 41197 | 1.48×10–4 | 424.93 | 509.89 | 0.0000 | 0.0000 |
线性 | 3 | 3 | 344503 | 1.25×10–3 | 114834 | 4.19×10–4 | 1184.47 | 1441.46 | 0.0000 | 0.0000 |
平方 | 3 | 3 | 10760 | 2.79×10–5 | 3587 | 9.31×10–6 | 37.00 | 32.08 | 0.0008 | 0.0011 |
交互作用 | 3 | 3 | 15509 | 4.89×10–5 | 5170 | 1.63×10–5 | 53.32 | 56.12 | 0.0003 | 0.0003 |
误差 | 5 | 5 | 485 | 1.45×10–6 | 97 | 2.91×10–7 | ||||
合计 | 14 | 14 | 371257 | 1.33×10–3 |
Table 6 Analysis of variance of Box-Behnken design(Y 3,Y 4)
方差来源 | 自由度 | 平方和 | 均方 | F | P | |||||
---|---|---|---|---|---|---|---|---|---|---|
Y 3 | Y 4 | Y 3 | Y 4 | Y 3 | Y 4 | Y 3 | Y 4 | Y 3 | Y 4 | |
回归模型 | 9 | 9 | 370772 | 1.33×10–3 | 41197 | 1.48×10–4 | 424.93 | 509.89 | 0.0000 | 0.0000 |
线性 | 3 | 3 | 344503 | 1.25×10–3 | 114834 | 4.19×10–4 | 1184.47 | 1441.46 | 0.0000 | 0.0000 |
平方 | 3 | 3 | 10760 | 2.79×10–5 | 3587 | 9.31×10–6 | 37.00 | 32.08 | 0.0008 | 0.0011 |
交互作用 | 3 | 3 | 15509 | 4.89×10–5 | 5170 | 1.63×10–5 | 53.32 | 56.12 | 0.0003 | 0.0003 |
误差 | 5 | 5 | 485 | 1.45×10–6 | 97 | 2.91×10–7 | ||||
合计 | 14 | 14 | 371257 | 1.33×10–3 |
1 | Nimkar S C , Mewada R K .An overview of exergy analysis for chemical process industries[J]. Int. J. Exergy, 2014, 15(4):468-507. |
2 | Feyzi V , Beheshti M . Exergy analysis and optimization of reactive distillation column in acetic acid production process[J]. Chemical Engineering and Processing: Process Intensification,2017, 120(10): 161–172. |
3 | 林子昕, 安维中, 袁琳皓, 等 . 基于㶲损失分析的反应精馏塔板上反应体积的优化设计[J]. 化工学报, 2015, 66(2): 655-661. |
Lin Z X , An W Z , Yuan L H , et al . Design and optimization of reaction volume distribution in reactive distillation columns based on exergy loss analysis[J]. CIESC Journal, 2015, 66(2): 655-661. | |
4 | Nova-Rincón A , Ramos M A , Gómez J M .Simultaneous optimal design and operation of a diabatic extractive distillation column based on exergy analysis[J]. Int.J. Exergy, 2015, 17(3): 287-312. |
5 | Sun J S , Dai L L , Shi M , et al . Further optimization of a parallel double-effect organosilicon distillation scheme through exergy analysis[J]. Energy, 2014, 69(5): 370-377. |
6 | Fonyo Z . Thermodynamic analysis of rectification(1): Reversible model of rectification[J]. Int. Chem. Eng., 1974, 14(1): 18-27. |
7 | Jimenez E S , Salamon P , Rivero R . Optimization of a diabatic distillation column with sequential heat exchangers[J]. Ind. Eng. Chem. Res.,2004, 43(23): 7566-7571. |
8 | Spasojević M D , Djaković D D , Janković M R . A new approach to entropy production minimization in diabatic distillation column with trays[J]. Therm. Sci., 2010, 14(2): 317-328. |
9 | Rivero R . Exergy simulation and optimization of adiabatic and diabatic binary distillation[J]. Energy, 2001, 26(6): 561-593. |
10 | 陆恩锡, 李晓玲, 吴震 . 蒸馏过程中间再沸器与中间冷凝器[J]. 化学工程, 2008, 36(11): 74-78. |
Lu E X , Li X L , Wu Z . Inter-reboiler and inter-condenser in distillation[J]. Chemical Engineering (China), 2008, 36(11): 74-78. | |
11 | Schaller M , Hoffmann K H . Numerically optimized performance of diabatic distillation columns[J]. Comput. Chem.Eng., 2001, 25(11): 1537–1548. |
12 | Sauar E , Siragusa G , Andresen B . Equal thermodynamic distance and equipartition of forces principles applied to binary distillation[J]. J. Phys. Chem. A, 2001, 105(11): 2312-2320. |
13 | Kjelstrup S , Bedeaux D , Sauar E . Minimum entropy production by equipartition of forces in irreversible thermodynamics[J]. Ind. Eng. Chem. Res., 2000, 39(11): 4434-4436. |
14 | Schaller M , Hoffmann K H , Rivero R , et al . The influence of heat transfer irreversibilities on the optimal performance of diabatic distillation columns[J]. J. Non-Equil. Thermody., 2002, 27(3): 257-269. |
15 | Shu L , Chen L , Sun F . Performance optimization of a diabatic distillation-column by allocating a sequential heat-exchanger inventory[J]. Appl. Energ., 2007, 84(9): 893-903. |
16 | Mah R S H , Nicholas J J , Wodnik R B . Distillation with secondary reflux and vaporization: a comparative evaluation[J]. AIChE Journal, 2010, 23(23): 651-658. |
17 | Khoa T D , Shuhaimi M , Hashim H , et al . Optimal design of distillation column using three dimensional exergy analysis curves[J]. Energy, 2010, 35(12): 5309-5319. |
18 | Rivero R , Garcia M , J. Simulation Urquiza , exergy analysis and application of diabatic distillation to a tertiary amyl methyl ether production unit of a crudeoil refinery [J]. Energy, 2004, 29(3): 467-489. |
19 | Alcántara-Avila J R , Sotowa K I , Horikawa T . Entropy production and economic analysis in diabatic distillation columns with heat exchangers in series[J]. Energy, 2015, 93(12): 1719-1730. |
20 | Agrawal R , Herron D M . Efficient use of an intermediate reboiler or condenser in a binary distillation[J]. AIChE Journal, 1998, 44(6): 1303-1315. |
21 | Agrawal R , Herron D M . Intermediate reboiler and condenser arrangement for binary distillation columns[J].AIChE Journal, 1998, 44(6): 1316–1324. |
22 | An W Z , Yu F J , Dong F L , et al . Simulated annealing approach to the optimal synthesis of distillation column with intermediate heat exchangers[J]. Chinese J. Chem. Eng., 2008, 16(1): 30-35. |
23 | De Koeijer G M , Kjelstrup S , Van der Kooi H J , et al . Positioning heat exchangers in binary tray distillation using isoforce operation[J].Energ. Convers. Manage., 2002, 43(9/10/11/12): 1571-1581. |
24 | Andersen T R , Siragusa G , Andresen B , et al . Energy efficient distillation by optimal distribution of heating and cooling requirements[J].Comput. Aided Chem. Eng., 2000, 8(C): 709-714. |
25 | Björn I N , Grén U , Soermardji A P . Diabatic distillation - comments on the influence of side streams[J]. Comput. Aided Chem. Eng., 2005, 20(C): 511-516. |
26 | Björn I N , Grén U , Soermardji A P . Intermediate heat exchange for fixed separation requirements: applications to a binary sieve tray distillation column for energy savings[J]. Chem. Eng. Res. Des., 2006, 84(6): 453-464. |
27 | Zhao S , Bai P , Tang K , et al . Optimal operation policy of multivessel batch distillationwith constant total refluxoperation for separation of a binary mixture[J]. Asia-Pac. J. Chem.Eng., 2013, 9(2): 239-247. |
28 | De Koeijer G , Rivero R . Entropy production and exergy loss in experimental distillation columns[J]. Chem. Eng. Sci., 2003, 58(8): 1587-1597. |
29 | 肖武, 李明月, 阮雪华, 等 . 响应面法优化一水硫酸氢钠流化催化精馏生产乙酸乙酯工艺条件[J]. 化工学报, 2014, 65(11): 4465-4471. |
Xiao W , Li M Y , Ruan X H , et al . Optimization of ethyl acetate process conditions for sodium bisulfate fluidized catalytic distillation using response surface methodology[J]. CIESC Journal, 2014, 65(11): 4465-4471. | |
30 | 赵朔, 白鹏 . 带有内部热集成的多储罐间歇精馏全回流操作[J]. 化工学报, 2015, 66(11): 4476-4484. |
Zhao S , Bai P . Internal heat integrated multivessel batch distillation with constant total reflux operation[J]. CIESC Journal, 2015, 66(11): 4476-4484. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[3] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[4] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[5] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[6] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[7] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[8] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[9] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[10] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[11] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[12] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[13] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[14] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[15] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||