1 |
ChenY, SobhanC B, PetersonG P. Review of condensation heat transfer in microgravity environments[J]. Journal of Thermophysics & Heat Transfer, 2006, 20(3): 353-360.
|
2 |
MarchukI, KabovO. Vapor condensation on curvilinear disk-shaped fin at microgravity[J]. Microgravity Science & Technology, 2008, 20(3/4): 165-169.
|
3 |
GlushchukA, MarchukI V, KabovO A. Experimental study of film condensation of FC-72 vapour on disk-shaped fin[J]. Microgravity Science & Technology, 2011, 23(1): 65-74.
|
4 |
BortolinS, AchkarG E, KostoglouM, et al. Experimental investigations on condensation in the framework of enhanced condensers in microgravity (ENCOM-2) project[J]. Microgravity Science & Technology, 2014, 26(5): 335-349.
|
5 |
WangX W, LiuQ S, ZhuZ Q, et al. Experiments of transient condensation heat transfer on the heat flux senor[J]. Microgravity Science & Technology, 2015, 27(5): 369-376.
|
6 |
KostoglouM, KarapantsiosT D, BuffoneC, et al. A theoretical study of steady state and transient condensation on axisymmetric fins under combined capillary and gravitational forces[J]. Microgravity Science & Technology, 2016, 28(5): 559-567.
|
7 |
LeiY C, ChenZ Q, ShiJ. Analysis of condensation heat transfer performance in curved triangle microchannels based on the volume of fluid method[J]. Microgravity Science & Technology, 2017, 29(6): 433-443.
|
8 |
LiP P, ChenZ Q, ShiJ. Numerical study on the effects of gravity and surface tension on condensation process in square minichannel[J]. Microgravity Science & Technology, 2018, 30(1/2): 19-24.
|
9 |
WangZ R, ZhangX B, WenS Z, et al. Experimental investigation of the effect of gravity on heat transfer and instability in parallel mini-channel heat exchanger[J]. Microgravity Science & Technology, 2018, (1/2): 1-8.
|
10 |
XuB, ChenZ Q. Droplet movement on a composite wedge-shaped surface with multi-gradients and different gravitational field by molecular dynamics[J]. Microgravity Science & Technology, 2018, 30(4): 571-579.
|
11 |
ZhangX M, XuJ L, ZhouZ Q. Experimental study of a pulsating heat pipe using FC-72, ethanol, and water as working fluids[J]. Experimental Heat Transfer, 2004, 17(1): 47-67.
|
12 |
KimS M, MudawarI. Theoretical model for annular flow condensation in rectangular micro-channels[J]. International Journal of Heat & Mass Transfer, 2012, 55(4): 958-970.
|
13 |
LeeH, ParkI, KonishiC, et al. Experimental investigation of flow condensation in microgravity[J]. Journal of Heat Transfer-Transactions of the ASME, 2014, 136(2): 021502.
|
14 |
KalyuzhnyE, KulackiF A. Condensation of FC-72[J]. International Journal of Heat & Mass Transfer, 2014, 69(2): 337-342.
|
15 |
ParkI, LeeH, MudawarI. Determination of flow regimes and heat transfer coefficient for condensation in horizontal tubes[J]. International Journal of Heat & Mass Transfer, 2015, 80(2009): 698-716.
|
16 |
SiddiqueM, KhaledA R A, AbdulhafizN I, et al. Recent advances in heat transfer enhancements: a review report[J]. International Journal of Chemical Engineering, 2010, (6): 28.
|
17 |
AliH M , BriggsA . Condensation heat transfer on pin-fin tubes: effect of thermal conductivity and pin height[J]. Applied Thermal Engineering, 2013, 60(1/2): 465-471.
|
18 |
AliH M, BriggsA. A semi-empirical model for free-convection condensation on horizontal pin-fin tubes[J]. International Journal of Heat & Mass Transfer, 2015, 81: 157-166.
|
19 |
AliH, KamranM S, AliH M, et al. Marangoni condensation of steam-ethanol mixtures on a horizontal low-finned tube[J]. Applied Thermal Engineering, 2017, 117: 366-375.
|
20 |
ManginiD, MameliM, FioritiD, et al. Hybrid pulsating heat pipe for space applications with non-uniform heating patterns: ground and microgravity experiments[J]. Applied Thermal Engineering, 2017, 126: 1029-1043.
|