CIESC Journal ›› 2012, Vol. 63 ›› Issue (9): 2733-2738.DOI: 10.3969/j.issn.0438-1157.2012.09.010

Previous Articles     Next Articles

A data-driven approach to chemical process alarm threshold optimization

LIU Heng, LIU Zhenjuan, LI Hongguang   

  1. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2012-06-05 Revised:2012-06-11 Online:2012-09-05 Published:2012-09-05

基于数据驱动的化工过程参数报警阈值优化

刘恒, 刘振娟, 李宏光   

  1. 北京化工大学信息科学与技术学院, 北京 100029
  • 通讯作者: 李宏光
  • 作者简介:刘恒(1985-),男,硕士研究生。

Abstract: In order to improve the performance of chemical process alarm systems,it is imperative to optimize assignments of process alarm thresholds.In response to limitations of traditional threshold assignment methods,based on historical data,this paper firstly invokes kernel density estimation methods to identify process alarm states before an objective associated with alarm threshold optimization in terms of minimizing the probabilities of false and missed alarms is established along with enabling numerical solvers.Simulation results on TE process demonstrate that the proposed approaches can effectively reduce the number of false alarms as well as limit that of missed alarms.

Key words: process alarms, thresholds, optimization, kernel density estimation

摘要: 为了提高化工过程报警系统的性能,需要对过程参数的报警阈值进行优化设置。针对传统阈值方法存在的问题,采用核密度估计方法、基于历史数据对过程报警状态进行估计,从最小化误报警和漏报警概率的角度建立了优化过程报警阈值的目标函数,并采用数值优化的方法进行求解。应用于TE过程的仿真结果表明,此方法能够有效地减少过程误报警的次数,并且对漏报警的次数进行抑制。

关键词: 过程报警, 阈值, 优化, 核密度估计

CLC Number: