[1] |
Kathiravan R, Kumar R, Gupta A, Chandra R. Preparation and pool boiling characteristics of copper nanofluids over a flat plate heater[J]. International Journal of Heat and Mass Transfer, 2010, 53(9/10): 1673-1681
|
[2] |
Bang I, Chang S H. Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool[J]. International Journal of Heat and Mass Transfer, 2005, 48(12): 2407-2419
|
[3] |
Kim H, Kim J, Kim M H. Experimental study on CHF characteristics of water-TiO2 nano-fluids[J]. Nuclear Engineering and Technology, 2006, 38(1): 61-68
|
[4] |
Kim S J, Bang I C, Buongiorno J, Hu L W. Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids[J]. Applied Physics Letters, 2006, 89(15): 153107
|
[5] |
Kim S J, Bang I C, Buongiorno J, Hu L. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 4105-4116
|
[6] |
Kwark S M, Kumar R, Moreno G, Yoo J, You S M. Pool boiling characteristics of low concentration nanofluids[J]. International Journal of Heat and Mass Transfer, 2010, 53(5/6): 972-981
|
[7] |
Kim H, DeWitt G, McKrell T, Buongiorno J. On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles[J]. International Journal of Multiphase Flow, 2009, 35(5): 427-438
|
[8] |
Xue H S, Fan J R, Hong R H, Hu Y C. Characteristic boiling curve of carbon nanotube nanofluid as determined by the transient calorimeter technique[J]. Applied Physics Letters, 2007, 90(18): 184107
|
[9] |
Park K J, Jung D, Shim S E. Nucleate boiling heat transfer in aqueous solutions with carbon nanotubes up to critical heat fluxes[J]. International Journal of Multiphase Flow, 2009, 35(6): 525-532
|
[10] |
Li Danyang(李旦洋),Zhu Yuanzheng(朱元正),Zhang Liang(张良), Fan Liwu(范利武),Xu Xu(徐旭),Yu Zitao(俞自涛),Hong Ronghua(洪荣华),Hu Yacai(胡亚才). Quenching boiling of aqueous suspensions with carbon nanotubes[J]. CIESC Journal (化工学报), 2013, 64(5): 1566-1572
|
[11] |
Taylor R A, Phelan P E. Pool boiling of nanofluids: comprehensive review of existing data and limited new data[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24): 5339-5347
|
[12] |
Kim H. Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review[J]. Nanoscale Research Letters, 2011, 6(1): 415
|
[13] |
Ahn H S, Kim M H. A review on critical heat flux enhancement with nanofluids and surface modification[J]. ASME Journal of Heat Transfer, 2012, 134(2): 024001
|
[14] |
Park S D, Lee S W, Kang S, Bang I C, Kim J H, Shin H S, Lee D W. Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux[J]. Applied Physics Letters, 2010, 97(2): 023103
|
[15] |
Park S D, Lee S W, Kang S, Kim S M, Bang I C. Pool boiling CHF enhancement by graphene-oxide nanofluid under nuclear coolant chemical environments[J]. Nuclear Engineering and Design, 2012, 252: 184-191
|
[16] |
Zhang L, Yu Z T, Li D Y, Fan L W, Zhu Y Z, Hong R H, Hu Y C, Fan J R, Cen K F. Enhanced critical heat flux during quenching of extremely dilute aqueous colloidal suspensions with graphene oxide nanosheets[J]. ASME Journal of Heat Transfer, 2013, 135(5): 054502
|
[17] |
Kandlikar S G. A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation[J]. ASME Journal of Heat Transfer, 2001, 123(6): 1071-1080
|