[1] |
Kharton V V, Patrakeev M V, Waerenborgh J C, Sobyanin V A, Veniaminov S A, Yaremchenko A A, Gaczyński P, Belyaev V D, Semin G L, Frade J R. Methane oxidation over perovskite-related ferrites: effects of oxygen nonstoichiometry[J]. Solid State Sci., 2005, 7(11): 1344-1352
|
[2] |
He X X, Meng M, He J J, Zou Z Q, Li X G, Li Z Q, Jiang Z. A potential substitution of noble metal Pt by perovskite LaCoO3 in ZrTiO4 supported lean-burn NOx trap catalysts[J]. Catal. Commun., 2010, 12(3): 165-168
|
[3] |
Wang P, Cai Y X, Lei L L, Li L. Effect of temperature on reduction of NOx and soot in diesel exhaust with perovskite-type catalysts[J]. Procedia Engineering, 2011, 16(1): 259-263
|
[4] |
Zawadzki M, Trawczyński J. Synthesis, characterization and catalytic performance of LSCF perovskite or VOC combustion[J]. Catal. Today, 2011, 176(1): 449-452
|
[5] |
Nishihata Y, Mizuki J, Tanaka H, Uenishi M, Kimura M. Self-regeneration of palladium-perovskite catalysts in modern automobiles[J]. J. Phys. Chem. Solids, 2005, 66(2/3/4): 274-282
|
[6] |
Nagai T, Ito W. Stabilization of the perovskite structure in Co-based mixed conductors by tri-valent cation substitution[J]. Solid State Ion, 2014, 259(1): 21-28
|
[7] |
Trepakov V, Makarova M, Stupakov O, Tereshina E A. Synthesis, structure and properties of heavily Mn-doped perovskite-type SrTiO3 nanoparticles[J]. Mater. Chem. Phys., 2014, 143(2): 570-577
|
[8] |
Ghaffari M, Shannon M, Hui H, Tan O K, Irannejad A. Preparation, surface state and band structure studies of SrTi1-xFexO3-d(x=0-1) perovskite-type nano structure by X-ray and ultraviolet photoelectron spectroscopy[J]. Surf. Sci., 2012, 606(5/6): 670-677
|
[9] |
Pon-On W, Meejoo S, Mehtar A, Tang I M. Influence of manganese substitution into the A-site of perovskite type Ca1-xMnxTiO3 ceramic[J] Ceram. Int., 2011, 37(7): 2075-2079
|
[10] |
Cimino S, Lisi L, De Rossi S, Faticanti M, Porta P. Methane combustion and CO oxidation on LaAl1-xMnxO3 perovskite-type oxide solid solutions[J]. Appl. Catal. B: Environ., 2003, 43(4): 397-406
|
[11] |
Sarshar Z, Kaliaguine S. Reduction kinetics of perovskite-based oxygen carriers for chemical looping combustion[J]. Ind. Eng. Chem. Res., 2013, 52(21): 6946-6955
|
[12] |
Sarshar Z, Kleitzb F, Kaliaguine S. Novel oxygen carriers for chemical looping combustion: La1-xCexBO3 (B =Co, Mn) perovskites synthesized by reactive grinding and nanocasting[J]. Energy Environ. Sci., 2011, 4(10): 4258-4269
|
[13] |
Rydén M, Lyngfelt A, Mattisson T, Chen D, Holmen A, Bjørgum E. Novel oxygen-carrier materials for chemical-looping combustion and chemical-looping reforming; LaxSr1-xFeyCo1-yO3-d perovskites and mixed-metal oxides of NiO, Fe2O3 and Mn3O4[J]. Int. J. Greenhouse Gas Control, 2008, 2(1): 21-36
|
[14] |
Galinsky N L, Yan H, Shafiefarhood A, Li F X. Iron oxide with facilitated O2- transport for facile fuel oxidation and CO2 capture in a chemical looping scheme[J]. ACS Sustainable Chem. Eng., 2013, 1(3): 364-373
|
[15] |
Shafiefarhood A, Galinsky N L, Huang Y, Chen Y G, Li F X. Fe2O3@LaxSr1-xFeO3 core-shell redox catalyst for methane partial oxidation[J]. Chem. Cat. Chem., 2014, 6(3): 790-799
|
[16] |
Isogai S, Kosaka F, Takimoto I, Hatano H, Oshima Y, Otomo J. Acceleration of Fe2O3 reduction kinetics by wet methane with calcium titanate as support[J]. Chem. Lett., 2013, 42(11): 1438-1440
|
[17] |
He F, Trainham J, Parsons G, Newman J, Li F. A hybrid solar-redox scheme for liquid fuel and hydrogen coproduction[J]. Energy Environ. Sci., 2014, DOI: 10.1039/C4EE00038B
|
[18] |
Fan L S. Chemical Looping Systems for Fossil Energy Conversions [M]. Hoboken: John Wiley & Sons, 2010
|
[19] |
Li F, Fan L S. Clean coal conversion processes — progress and challenges[J]. Energy & Environ. Sci., 2008, (1): 248
|
[20] |
Li F, Sun Z, Luo S, Fan L S. Ionic diffusion in iron oxidation — effect of support and its implications to chemical looping applications[J]. Energy Environ. Sci., 2011(4): 876-880
|
[21] |
Li F, Luo S, Sun Z, Fan L S. Role of metal oxide support in redox reactions of iron oxide for chemical looping applications: experiments and density functional theory calculations[J]. Energy Environ. Sci., 2011(4): 3661-3667
|
[22] |
Fan L S, Li F, Ramkumar S. Utilization of chemical looping strategy in coal gasification processes[J]. Particuology, 2008, 6(3): 131-142
|
[23] |
He F, Galinsky N, Li F. Chemical looping gasification of solid fuels using bimetallic oxygen carrier particles — feasibility assessment and process simulations[J]. Int. J. Hydrog. Energy, 2013, 38(19): 7839-7854
|
[24] |
Chen Y, Galinsky N, Wang Z, Li F X. Investigation of perovskite supported composite oxides for chemical looping conversion of syngas// 2013 AIChE Annual Meeting[C]. San Francisco, CA, US, 2013
|
[25] |
VanBerge P J, Everson R C. Cobalt as an alternative Fischer-Tropsch catalyst to iron for the production of middle distillates[J]. Natural Gas Conversion Ⅵ, 1997, 107:207-212
|
[26] |
Sie S T. Process development and scale up(Ⅳ): Case history of the development of a Fischer-Tropsch synthesis process[J]. Rev. Chem. Eng., 1998, 14(2): 109-157
|
[27] |
Nishihata, Y, Mizuki1 J, Akao T, et al. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control[J]. Nature, 2002, 418: 164-167
|
[28] |
Ruether J, Ramezan M, Grol E. Life-cycle analysis of greenhouse gas emissions for hydrogen fuel production in the United States from LNG and coal[EB/OL]. DOE/NETL-2006/1227. http://www.netl. doe.gov/ energy-analyses/pubs/H2_from_Coal_LNG_Final.pdf
|
[29] |
Jaramillo P, Griffin W M, Matthews H S. Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas[J]. Energy Environ. Sci., 2008, 42(20): 7559-7565
|