CIESC Journal ›› 2014, Vol. 65 ›› Issue (8): 3026-3031.DOI: 10.3969/j.issn.0438-1157.2014.08.025

Previous Articles     Next Articles

Molecular permeation in nanoporous graphene gas separation membranes

SUN Chengzhen1, ZHANG Feng2, LIU Hai2, BAI Bofeng1   

  1. 1 State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China;
    2 First Gas Production Factory, PetroChina Xinjiang Oilfield Branch Company, Karamay 834000, Xinjiang, China
  • Received:2013-11-13 Revised:2014-03-14 Online:2014-08-05 Published:2014-08-05
  • Supported by:

    supported by the National Natural Science Foundation of China for Creative Research Groups (51121092).

多孔石墨烯气体分离膜分子渗透机理

孙成珍1, 张锋2, 柳海2, 白博峰1   

  1. 1 西安交通大学动力工程多相流国家重点实验室, 陕西 西安 710049;
    2 中国石油新疆油田分公司采气一厂, 新疆 克拉玛依 834000
  • 通讯作者: 白博峰
  • 基金资助:

    国家自然科学基金创新群体项目(51121092)。

Abstract: A molecular dynamics simulation was performed to probe the mechanism of molecular permeation through nanoporous graphene gas separation membranes. The investigation involves 4 different gas molecules (He, H2, N2 and CH4) permeating 9 graphene nanopores with different sizes. The results show that the permeation flux depends not only on the kinetic parameters of molecules, i.e. molecular mass and kinetic diameter, but also on the adsorption of molecules on the surface of graphene membrane. Apart from the permeation free of interactions with the graphene surface, the adsorption layer composed of molecules with high densities on the graphene surface provides an additional way for molecular permeation, increasing the permeation flux as the molecular adsorption increases. In addition, the permeation flux of H2 molecules increases linearly with the pressure for different graphene nanopores.

Key words: separation, permeation, molecular simulation, membrane

摘要: 通过分子动力学方法模拟了4种不同气体分子(He,H2,N2和CH4)在多孔石墨烯气体分离膜中的穿透过程,揭示了气体分子穿透石墨烯纳米孔的渗透机理,指出分子的渗透不仅与其动力学参数有关,如分子直径和质量,还与分子在石墨烯表面的吸附有关。石墨烯表面的吸附层给气体分子的渗透提供了一个额外的路径,因此分子在石墨烯表面的吸附越强,分子的渗透通量越大。同时,不同大小的纳米孔下H2分子的渗透通量都随着压力的增加而线性增加。

关键词: 分离, 渗透, 分子模拟,

CLC Number: