Previous Articles Next Articles
LI Heng1, KE Lanting2, WANG Haitao2, ZHENG Yanmei2, WANG Yuanpeng2, HE Ning2, LI Qingbiao1,2,3
Received:
2013-12-31
Revised:
2014-02-18
Online:
2014-05-05
Published:
2014-05-05
Supported by:
supported by the National Basic Research Program of China (2013CB733505).
李恒1, 柯蓝婷2, 王海涛2, 郑艳梅2, 王远鹏2, 何宁2, 李清彪1,2,3
通讯作者:
李清彪
基金资助:
国家重点基础研究发展计划项目(2013CB733505)。
CLC Number:
LI Heng, KE Lanting, WANG Haitao, ZHENG Yanmei, WANG Yuanpeng, HE Ning, LI Qingbiao. Simulation research on anaerobic digestion biogas generation from low-grade biomass[J]. CIESC Journal, DOI: 10.3969/j.issn.0438-1157.2014.05.004.
李恒, 柯蓝婷, 王海涛, 郑艳梅, 王远鹏, 何宁, 李清彪. 低劣生物质厌氧产甲烷过程的模拟研究进展[J]. 化工学报, DOI: 10.3969/j.issn.0438-1157.2014.05.004.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.3969/j.issn.0438-1157.2014.05.004
[1] | Fehrenbach H, Giegrich J, Reinhardt G, Sayer U, Gretz M, Lanje K, Schmitz J. Kriterien einer nachhaltigen Bioenergienutzung im globalen Maßstab[J]. UBA-Forschungsbericht, 2008, 206: 41-112 |
[2] | Andrews J F. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates[J]. Biotechnology and Bioengineering, 1968, 10(6): 707-723 |
[3] | Graef S P, Andrews J F. Mathematical modeling and control of anaerobic digestion[J]. AIChE Symposium Series, 1974, 136: 101-131 |
[4] | Angelidaki I I, Ellegaard L, Ahring B K. A comprehensive model of anaerobic bioconversion of complex substrates to biogas[J]. Biotechnology and Bioengineering, 1999, 63(3): 363-372 |
[5] | Batstone D J, Keller J, Angelidaki I, Kalyuzhnyi S V, Pavlostathis S G. The IWA anaerobic digestion model No.1 (ADM1)[J]. Water Science and Technology, 2002, 45: 65-73 |
[6] | Vavilin V A, Lokshina L Y, Flotats X, Angelidaki I. Anaerobic digestion of solid material: multidimensional modeling of continuous-flow reactor with nonuniform influent concentration distributions[J]. Biotechnology and Bioengineering, 2007, 97(2): 354-366 |
[7] | Gujer W, Zehnder A J B. Conversion processes in anaerobic digestion[J]. Water Science and Technology, 1983, 15: 127-167 |
[8] | Karakashev D, Bastone D, Angelidaki I. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors[J]. Applied and Environment Microbiology, 2005, 71: 331-338 |
[9] | Peter Weiland. Biogas production: current state and perspectives[J]. Applied and Environment Microbiology, 2010, 85(4):849-860 |
[10] | Triolo J M, Sommer S G, Moller H B, Weisbjerg M R, Jiang X Y. A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential[J]. Bioresource Technology, 2011, 102(20): 9395-9402 |
[11] | Baserga U. Landwirtschaftliche Co-Vergaerungs-Biogasanlagen : Biogas aus organischen Reststoffen und Energiegras[M]. Taenikon: FAT, 1998 |
[12] | Rodrigo A Labatut, Largus T Angenent, Norman R Scott. Biochemical methane potential and biodegradability of complex organic substrates[J]. Bioresource Technology, 2011, 102(3): 2255-2264 |
[13] | Li Yeqing, Zhang Ruihong, Liu Guangqing, Chen Chang, He Yanfeng, Liu Xiaoying. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates[J]. Bioresource Technology, 2013, 149: 565-569 |
[14] | Buswell A M, Mueller H F. Mechanism of methane fermentation[J]. Industrial and Engineering Chemistry, 1952, 44(3): 550-552 |
[15] | Li Y Q, Feng L, Zhang R H, He Y F, Liu X Y, Xiao X, Ma X X, Chen C, Liu G Q. Influence of inoculum source and pre-incubation on bio-methane potential of chicken manure and corn stover[J]. Applied and Environment Microbiology, 2013, 171(1): 117-127 |
[16] | Kaparaju P, Serrano M, Thomsen A B, Kongjan P, Angelidaki I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept[J]. Bioresource Technology, 2009, 100(9): 2562-2568 |
[17] | Triolo J M, Sommer S G, Moller H B, Weisbjerg M R, Jiang X Y. A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential[J]. Bioresource Technology, 2011, 102(20): 9395-9402 |
[18] | Müller J. Thermische, chemische und biochemische Desintegrationsverfahren [J]. Korresp Abwasser, 2003, 50: 796-804 |
[19] | Mshandete A, Bjornsson L, Kivaisi A K, Rubindamayugi M S T, Matthiasson B. Effect of particle size on biogas yield from sisal fibre waste[J]. Renewable Energy, 2006, 31(14): 2385-2392 |
[20] | Palmowski L M, Muller J. Influence of the size reduction of organic waste on their anaerobic digestion[J]. Water Science and Technology, 2000, 41(3): 155-162 |
[21] | Hartmann H, Angelidaki I, Ahring B K. Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration[J]. Water Science and Technology, 2000, 41(3): 145-153 |
[22] | Mata-Alvarez J, Mac_e S, Llabr_es P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives[J]. Bioresource Technology, 2000, 74(1): 3-16 |
[23] | Kono T, Asai T. Kinetics of continuous cultivation[J]. Biotechnology and Bioengineering, 1969, 11(1): 19-36 |
[24] | Metcalf, Eddy I. Wastewater Engineering: Treatment Disposal and Reuse[M]. New York: McGraw-Hill, 2003 |
[25] | Pavlostathis S G, Giraldo-Gomez E. Kinetics of anaerobic treatment: a critical review[J]. Critical Reviews in Environmental Control, 1991, 21(5/6): 411-490 |
[26] | Monod J. The growth of bacterial cultures[J]. Annual Review of Neuroscience, 1949, 3: 371-394 |
[27] | Contois D E. Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous cultures[J]. Journal of General Microbiology, 1959, 21(1): 40-50 |
[28] | Chen Y R, Hashimoto A G. Substrate utilization kinetic model for biological treatment processes[J]. Biotechnology and Bioengineering, 1980, 22(10): 2081-2095 |
[29] | Grau P, Dohányos M, Chudoba J. Kinetics of multicomponent substrate removal by activated sludge[J]. Water Research, 1975, 9(7): 637-642 |
[30] | Lokshina L Y, Vavilin V A, Kettunen R H, Rintala J A, Holliger C. Evaluation of kinetic coefficients using integrated Monod and Haldane models for low-temperature acetoclastic methanogenesis[J]. Water Research, 2001, 35(12): 2913-2922 |
[31] | Bolzonella D, Fatone F, Pavan P, Cecchi F. Anaerobic fermentation of organic municipal solid wastes for the production of soluble organic compounds[J]. Industrial & Engineering Chemistry Research, 2005, 44(10): 3412-3418 |
[32] | Valentini A, Garruti G, Rozzi A, Tilche A. Anaerobic degradation kinetics of particulate organic matter: a new approach[J]. Water Science and Technology,1997, 36(6/7): 239-246 |
[33] | Liebetrau J, Kraft E, Bidlingmaier W. The influence of the hydrolysis rate of co-substrates on process behaviour//Proceedings of the Tenth World Congress on Anaerobic[C]. 2004 |
[34] | Vavilin V A, Lokshina L Y, Jokela J P Y, Rintala J A. Modeling solid waste decomposition[J]. Bioresource Technology, 2004, 94(1): 69-81 |
[35] | Hobson P N. The kinetics of anaerobic digestion of farm wastes[J]. Journal of Chemical Technology and Biotechnology, 1983, 33(1): 1-20 |
[36] | Rotter B E, Barry D A, Gerhard J I, Small J S. Parameter and process significance in mechanistic modeling of cellulose hydrolysis[J]. Bioresource Technol., 2009, 99(13):5738-5748 |
[37] | Mosey F E. Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose[J]. Water Science and Technology, 1983, 15(8/9): 209-232 |
[38] | Tosun I, Gonullu M T, Gunay A. Anaerobic digestion and methane generation potential of rose residue in batch reactors[J]. J. Environmental Geochemistry and Health, 2004, 39 (4): 915-925 |
[39] | Vavilin V A, Rytov S V, Lokshina L Y. A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter[J]. Bioresource Technol., 1996, 56(2/3): 229-237 |
[40] | Henze M, Grady C P L, Gujer W, Marais G V R, Matsuo T. Activated Sludge Model No. 1. Scientific and Technical Report No. 1[M]. London: IWA Publishing, 1987 |
[41] | Henze M, Gujer W, Mino T, Matsuo T, Wentzel M C, Marais G R. Activated Sludge Model No. 2d. Scientific and Technical Report No. 3[M]. London: IWA Publishing, 1999 |
[42] | Henze M, Gujer W, Mino T, van Loosdrecht M C M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. Scientific and Technical Report No. 9[M]. London: IWA Publishing, 2000 |
[43] | Derbal K, Bencheikh-Lehocine M, Cecchi F, Meniai A H, Pavan P. Application of the IWA ADM1 model to simulate anaerobic co-digestion of organic waste with waste activated sludge in mesophilic condition[J]. Bioresource Technology, 2010, 100(4): 1539-1543 |
[44] | Fezzani B, Cheikh R. Implementation of IWA anaerobic digestion model No.1(ADM1) for simulating the thermophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste in a semi-continuous tubular digester[J]. Chemical Engineering Journal, 2008, 141(1/2/3): 75-88 |
[45] | Astals S, Esteban-Gutiérrez M, Fernández-Arévalo T, Aymerich E, García-Heras J L, Mata-Alvarez J. Anaerobic digestion of seven different sewage sludges: a biodegradability and modelling study[J]. Water Research, 2013, 47(16): 6033-6043 |
[46] | Mairet F, Bernard O, Ras M, Lardon L, Steyer J P. Modeling anaerobic digestion of microalgae using ADM1[J]. Bioresource Technology, 2011, 102(13): 6823-6829 |
[47] | Ramirez I, Mottet A, Carrère H, Déléris S, Vedrenne F, Steyer J P. Modified ADM1 disintegration/hydrolysis structures for modeling batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge[J]. Water Research, 2009, 43(14): 3479-3492 |
[48] | Astals S, Ariso M, Galí A, Mata-Alvarez J. Co-digestion of pig manure and glycerine: experimental and modelling study[J]. Journal of Environmental Management, 2011, 92(4): 1091-1096 |
[49] | Galí A, Benabdallah T, Astals S, Mata-Alvarez J. Modified version of ADM1 model for agro-waste application[J]. Bioresource Technology, 2009, 100(11): 2783-2790 |
[50] | Ivan Ramirez, Alexis Mottet, Hélène Carrèrea.Modified ADM1 disintegration / hydrolysis structures for modeling batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge[J]. Water Research, 2009, 43(14): 3479-3492 |
[51] | Galí A,Benabdallah T,Astals S.Modified version of ADM1 model for agro-waste application[J]. Bioresource Technology,2009, 100(11): 2783-2790 |
[52] | Guo Jianbin, Dong Renjie, Clemens Joachim, Wei Wanga. Kinetics evaluation of a semi-continuously fed anaerobic digester treating pig manure at two mesophilic temperatures[J]. Water Research, 2013, 47(15): 5743-5750 |
[53] | Hamed M El-Mashad, Zhang Ruihong. Biogas production from co-digestion of dairy manure and food waste[J]. Bioresource Technology, 2010, 101(11): 4021-4028 |
[54] | Krishania M, Vijay V K, Chandra R. Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay energy[J]. Bioresource Technology, 2013, 57(1): 359-367 |
[55] | Biswas J, Chowdhury R, Bhattacharya P. Mathematical modeling for the prediction of biogas generation characteristics of an anaerobic digester based on food/vegetable residues[J]. Biomass and Bioenergy, 2007, 31(1): 80-86 |
[56] | Manfred Lubkena, Marc Wicherna, Markus Schlattmannb, Andreas Gronauerb, Harald Horn. Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops[J]. Water Research, 2007, 41(18): 4085-4096 |
[57] | Thomas Amon, Barbara Amon, Vitaliy Kryvoruchko, Werner Zollitsch, Karl Mayer, Leonhard Gruber. Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield[J]. Agriculture, Ecosystems and Environment, 2007, 118(1/2/3/4): 173-182 |
[58] | Benjamin C Lyseng, Wenche Bergland, Deshai Botheju, Finn Haugen, Rune Bakke. Biogas Reactor Modeling with ADM1[M]. Norway: Faculty of Technology (Porsgrunn), 2012 |
[59] | Tiedje J M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium//Biology of Anaerobic Microorganisms[M]. Zehnder A J B, ed. New York: Wiley, 1988: 179-244 |
[60] | Knowles R. Denitrification[J]. Microbiological Reviews, 1982, 46(1): 43-70 |
[61] | Konrad Koch, Manfred Lübken, Tito Gehring , Marc Wichern, Harald Horn. Biogas from grass silage measurements and modeling with ADM1[J]. Bioresource Technology, 2010, 101(21): 8158-8165 |
[62] | Francis Mairet, Olivier Bernard, Monique Ras, Laurent Lardon, Jean-Philippe Steyer. A dynamic model for anaerobic digestion of microalgae//18th IFAC World Congress[C]. Milano, Italy, 2011 |
[63] | Wild D, Kisliakova A, Siegrist H. Prediction of recycle phosphorus loads from anaerobic digestion[J]. Water Research, 1997, 31(9): 2300-2308 |
[64] | Carliell-Marquet C M, Wheatley A D. Measuring metal and phosphorous speciation in P-rich anaerobic digesters[J]. Water Science and Technology, 2002, 45(10): 305-312 |
[65] | Gungor K, Karthikeyan K G. Phosphorus forms and extractability in dairy manure: a case study for Wisconsin on-farm anaerobic digesters[J]. Bioresource Technology, 2008, 99(15): 425-436 |
[66] | Li Y, Lei Z, Zhang Z, Sugiura N. Effects of nutrient addition on phenol biodegradation rate in biofilm reactors for hypersaline wastewater treatment[J]. Environmental Technology, 2006, 27(5): 511-520 |
[67] | Lei Zhongfang, Chen Jiayi, Zhang Zhenya, Sugiura Norio. Methane production from rice straw with acclimated anaerobic sludge: effect of phosphate supplementation[J]. Bioresource Technology, 2010, 101(12): 4343-4348 |
[1] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[2] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[3] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[4] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[5] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[6] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[7] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[8] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[9] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[10] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[11] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[12] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[13] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[14] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[15] | Han HU, Liang YANG, Chunxiao LI, Daoping LIU. Kinetics of methane storage in the natural tobacco leaching filtrate in the hydrate form [J]. CIESC Journal, 2023, 74(3): 1313-1321. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||