CIESC Journal ›› 2014, Vol. 65 ›› Issue (7): 2668-2675.DOI: 10.3969/j.issn.0438-1157.2014.07.026
Previous Articles Next Articles
GE Jun, LU Diannan, ZHU Jingying, LIU Zheng
Received:
2014-03-25
Revised:
2014-04-02
Online:
2014-07-05
Published:
2014-07-05
Supported by:
supported by the National Natural Science Foundation of China (21036003, 21206082).
戈钧, 卢滇楠, 朱晶莹, 刘铮
通讯作者:
刘铮
基金资助:
国家自然科学基金项目(21036003,21206082)。
CLC Number:
GE Jun, LU Diannan, ZHU Jingying, LIU Zheng. Advances in preparation of nanostructured enzyme catalysts[J]. CIESC Journal, 2014, 65(7): 2668-2675.
戈钧, 卢滇楠, 朱晶莹, 刘铮. 纳米酶催化剂制备方法研究进展[J]. 化工学报, 2014, 65(7): 2668-2675.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.3969/j.issn.0438-1157.2014.07.026
[1] | Li Z, Zhang Y, Lin M, Ouyang P, Ge J, Liu Z. Lipase-catalyzed one-step and regioselective synthesis of clindamycin palmitate[J]. Org. Process Res. Dev., 2013, 17: 1179-1182 |
[2] | Wang R, Zhang Y, Huang J, Lu D, Ge J, Liu Z. Substrate imprinted lipase nanogel for one-step synthesis of chloramphenicol palmitate[J]. Green Chem., 2013, 15: 1155-1158 |
[3] | Savile C K, Janey J M, Mundorff E C, Moore J C, Tam S, Jarvis W R, Colbeck J C, Krebber A, Fleitz F J, Brands J, Devine P N, Huisman G W, Hughes G J. Biocatalytic asymmetric synthesis of chiral amines fromketones applied to sitagliptin manufacture[J]. Science, 2010, 329:305-309 |
[4] | Ma S, Gruber J, Davis C, Newman L, Gray D, Wang A, Grate J, Huisman G, Sheldon R. A green-by-design biocatalytic process for atorvastatin intermediate[J]. Green Chem., 2010, 12:81-86 |
[5] | Bornscheuer U T, Huisman G W, Kazlauskas R J, Lutz S, Moore J C, Robins K. Engineering the third wave of biocatalysis[J]. Nature, 2012, 485:185-194 |
[6] | Pollard D, Woodley J. Biocatalysis for pharmaceutical intermediates: the future is now[J]. Trends Biotechnol., 2007, 25: 66-73 |
[7] | Patel R. Biocatalysis: synthesis of key intermediates for development of pharmaceuticals[J]. ACS Catal., 2011, 1: 1056-1074 |
[8] | Schmid A, Dordick J, Hauer B, Kiener A, Wubbolts M, Witholt B. Industrial biocatalysis today and tomorrow[J]. Nature, 2001, 409:258-268 |
[9] | Wu H, Xu J, Tsang S. Efficient resolution of a chiral alcohol (RS)-HMPC by enzymatic transesterification with vinyl acetate using surfactant-modified lipase[J]. Enzyme Microb. Technol., 2004, 34: 523-528 |
[10] | Zhao X, Wei D, Song Q, Zhang M. Study of ibuprofen glucopyranoside derivative synthesis by Candida antarctica lipase in organic solvent[J]. Prep. Biochem. Biotechnol., 2007, 37: 27-38 |
[11] | Song Q, Wei D. Study of vitamin C ester synthesis by immobilized lipase from Candida sp[J]. J. Mol. Catal. B: Enzym., 2002, 18: 261-266 |
[12] | Li N, Zong M, Liu X, Ma D. Regioselective synthesis of 3′-O-caproyl-floxuridine catalyzed by Pseudomonas cepacia lipase[J]. J. Mol. Catal. B: Enzym., 2007, 47: 6-12 |
[13] | Yin C, Liu T, Tan T. Synthesis of vitamin A esters by immobilized Candida sp. lipase in organic media[J]. Chin. J. Chem. Eng., 2006, 14: 81-86 |
[14] | Singh R K, Tiwari M K, Singh R, Lee J K. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes[J]. International Journal of Molecular Sciences, 2013, 14: 1232-1277 |
[15] | Zhang Songping(张松平), Wang Ping(王平). Chemical modification of enzymes—an important tool to enhance the performance of biocatalysts [J]. Chinese Journal of Bioprocess Engineering(生物加工过程), 2006, 4(1): 4-8 |
[16] | Liu Renlin(刘仁霖), Luo Hui(罗晖), Chang Yanhong(常雁红), Sun Chunbao(孙春宝). Research progress of nanometer-scale immobilization of enzyme[J]. Sci. Tech. Engng.(科学技术与工程), 2007, 7(7): 1411-1415 |
[17] | Sun Jianhua(孙建华), Dai Rongji(戴荣继), Deng Yulin(邓玉林). Progress in enzyme immobilization technique [J]. Chemical Industry and Engineering Progress(化工进展), 2010, 29(4): 715-721 |
[18] | Su Long(苏龙), Zhuang Yu(庄宇), He Bingfang(何冰芳). Recent advances in directed evolution of enzymes and its application in industrial biocatalysis[J]. Chinese Journal of Bioprocess Engineering(生物加工过程), 2011, 9(4): 69-75 |
[19] | Zhang N, Suen W C, Windsor W, Xiao L, Madison V, Zaks A. Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution[J]. Protein Eng.,2003, 16: 599-605 |
[20] | Sharma P K, Kumar R, Mohammad O, Singh R, Kaur J. Engineering of a metagenome derived lipase toward thermal tolerance: effect of asparagine to lysine mutation on the protein surface[J]. Gene, 2012, 491: 264-271 |
[21] | Sriprapundh D, Vieille C, Zeikus J G. Directed evolution of Thermotoga neapolitana xylose isomerase: high activity on glucose at low temperature and low pH[J]. Protein Eng., 2003, 16: 683-690 |
[22] | Zhong C Q, Song S, Fang N, Liang X, Zhu H, Tang X F, Tang B. Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis[J]. Biotechnol. Bioeng., 2009, 104: 862-870 |
[23] | Le Q A, Joo J C, Yoo Y J, Kim Y H. Development of thermostable Candida antarctica lipase B through novel in silico design of disulfide bridge[J]. Biotechnol. Bioeng., 2012, 109: 867-876 |
[24] | Huang J W, Cheng Y S, Ko T P, Lin C Y, Lai H L, Chen C C, Ma Y, Zheng Y, Huang C H, Zou P, Liu J R, Guo R T. Rational design to improve thermostability and specific activity of the truncated Fibrobacter succinogenes 1,3-1,4-b-D-glucanase[J]. Appl. Microbiol. Biotechnol., 2012, 94: 111-121 |
[25] | Ge J, Yang C, Zhu J, Lu D, Liu Z. Nanobiocatalysis in organic media: opportunities for enzymes in nanostructures[J]. Top. Catal., 2012, 55: 1070-1080 |
[26] | Ge J, Lu D, Liu Z, Liu Z. Recent advances in nanostructured biocatalysts[J]. Biochem. Eng. J., 2009, 44: 53-59 |
[27] | Wang R, Zhang Y, Lu D, Ge J, Liu Z, Zare R N. Functional protein-organic/inorganic hybrid nanomaterials[J]. WIERs: Nanomed. Nanobi., 2013, 5: 320-328 |
[28] | Wang P. Nanoscale biocatalyst systems[J]. Curr. Opin. Biotechnol., 2006, 17: 574-579 |
[29] | Kim J, Grate J W, Wang P. Nanostructures for enzyme stabilization[J]. Chem. Eng. Sci., 2006, 61: 1017-1026 |
[30] | Luckarift H R, Spain J C, Naik R R, Stone M O. Enzyme immobilization in a biomimetic silica support[J]. Nat. Biotechnol., 2004, 22: 211-213 |
[31] | Wang Y, Caruso F. Mesoporous silica spheres as supports for enzyme immobilization and encapsulation[J]. Chem. Mater., 2005, 17: 953-961 |
[32] | Dyal A, Loos K, Noto M, Chang S W, Spagnoli C, Shafi K V, Ulman A, Cowman M, Gross R A. Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles[J]. J. Am. Chem. Soc., 2003, 125: 1684-1685 |
[33] | Li J, Wang J, Gavalas V G, Atwood D A, Bachas L G. Alumina-pepsin hybrid nanoparticles with orientation-specific enzyme coupling[J]. Nano. Lett., 2003, 3: 55-58 |
[34] | Wu C, Bai S, Ansorge-Schumacher M B, Wang D. Nanoparticle cages for enzyme catalysis in organic media[J]. Adv. Mater., 2011, 23: 5694-5699 |
[35] | Asuri P, Karajanagi S S, Dordick J S, Kane R S. Directed assembly of carbon nanotubes at liquid-liquid interfaces: nanoscale conveyors for interfacial biocatalysis[J]. J. Am. Chem. Soc., 2006, 128: 1046-1047 |
[36] | Ji P, Tan H, Xu X, Feng W. Lipase covalently attached to multiwalled carbon nanotubes as an efficient catalyst in organic solvent[J]. AIChE J., 2010, 56: 3005-3011 |
[37] | Palocci C, Chronopoulou L, Venditti I, Cernia E, Diociaiuti M, Fratoddi I, Russo M V. Lipolytic enzymes with improved activity and selectivity upon adsorption on polymeric nanoparticles[J]. Biomacromolecules, 2007, 8: 3047-3053 |
[38] | Yu L, Banerjee I A, Gao X, Nuraje N, Matsui H. Fabrication and application of enzyme- incorporated peptide nanotubes[J]. Bioconjugate. Chem., 2005, 16: 1484-1487 |
[39] | Shi J, Zhang X, Zhang S, Wang X, Jiang Z. Incorporating mobile nanospheres in the lumen of hybrid microcapsules for enhanced enzymatic activity[J]. ACS Appl. Mater. Interfaces, 2013, 5: 10433-10436 |
[40] | Shi J, Wang X, Jiang Z, Liang Y, Zhu Y, Zhang C. Constructing spatially separated multienzyme system through bioadhesion-assisted bio-inspired mineralization for efficient carbon dioxide conversion[J]. Bioresour. Technol., 2012, 118: 359-366 |
[41] | Ji X, Wang P, Su Z, Ma G, Zhang S. Enabling multi-enzyme biocatalysis using coaxial-electrospun hollow nanofibers: redesign of artificial cells[J]. J. Mater. Chem. B, 2014, 2: 181-190 |
[42] | Zheng M, Su Z, Ji X, Ma G, Wang P, Zhang S. Magnetic field intensified bi-enzyme system with in situ cofactor regeneration supported by magnetic nanoparticles[J]. J. Biotechnol., 2013, 168: 212-217 |
[43] | Zhang Y, Chen Q, Ge J, Liu Z. Controlled display of enzyme activity with a stretchable hydrogel[J]. Chem. Commun., 2013, 49: 9815-9817 |
[44] | Abuchowski A, Mccoy J R, Palczuk N C, Vanes T, Davis F F. Effect of covalent attachment of polyethylene-glycol on immunogenicity and circulating life of bovine liver catalase[J]. J. Biol. Chem., 1977, 252: 3582-3586 |
[45] | Stayton P, Shimoboji T, Long C, Chilkoti A, Chen G, Harris J, Hoffman A. Control of protein- ligand recognition using a stimuli-responsive polymer[J]. Nature, 1995, 378: 472-474 |
[46] | Ito Y, Sugimura N, Kwon O, Imanishi Y. Enzyme modification by polymers with solubilities that change in response to photoirradiation in organic media[J]. Nat. Biotechnol., 1999, 17: 73-75 |
[47] | Ge J, Yan M, Lu D, Zhang M, Liu Z. Hyperbranched polymer conjugated lipase with enhanced activity and stability[J]. Biochem. Eng. J., 2007, 36: 93-99 |
[48] | Grotzky A, Nauser T, Erdogan H, Schluter A D, Walde P. A fluorescently labeled dendronized polymer-enzyme conjugate carrying multiple copies of two different types of active enzymes[J]. J. Am. Chem. Soc., 2012, 134: 11392-11395 |
[49] | Zhu J, Zhang Y, Lu D, Zare R N, Ge J, Liu Z. Temperature-responsive enzyme-polymer nanoconjugates with enhanced catalytic activities in organic media[J]. Chem. Commun., 2013, 49: 6090-6092 |
[50] | Yan M, Ge J, Liu Z, Ouyang P K. Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability[J]. J. Am. Chem. Soc., 2006, 128: 11008-11009 |
[51] | Ge J, Lu D, Wang J, Yan M, Lu Y, Liu Z. Molecular fundamentals of enzyme nanogels[J]. J. Phys. Chem. B, 2008, 112: 14319-14324 |
[52] | Ge J, Lu D, Wang J, Liu Z. Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide[J]. Biomacromolecules, 2009, 10: 1612-1618 |
[53] | Ge J, Lu D, Yang C, Liu Z. A lipase-responsive vehicle using amphipathic polymer synthesized with the lipase as catalyst[J]. Macromol. Rapid Commun., 2011, 32: 546-550 |
[54] | Yan M, Liu Z, Lu D, Liu Z. Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperature[J]. Biomacromolecules, 2007, 8: 560-565 |
[55] | Liu Z, Lu D, Yin L, Li J, Cui Y, Chen W, Liu Z. Strengthening the stability of a tunnel-shaped homotetramer protein with nanogels[J]. J. Phys. Chem. B, 2011, 115: 8875-8882 |
[56] | Yan M, Du J, Gu Z, Liang M, Hu Y, Zhang W, Priceman S, Wu L, Zhou Z, Liu Z, Segura T, Tang Y, Lu Y. A novel intracellular protein delivery platform based on single-protein nanocapsules[J]. Nat. Nanotechnol., 2010, 5: 48-54 |
[57] | Gu Z, Yan M, Hu B, Joo K I, Biswas A, Huang Y, Lu Y, Wang P, Tang Y. Protein nanocapsule weaved with enzymatically degradable polymeric network[J]. Nano. Lett., 2009, 9: 4533-4538 |
[58] | Liu Y, Du J, Yan M, Lau M, Hu J, Han H, Yang O, Liang S, Wei W, Wang H, Li J, Zhu X, Shi L, Chen W, Ji C, Lu Y. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication[J]. Nat. Nanotechnol., 2013, 8: 187-192 |
[59] | Lin M, Lu D, Zhu J, Yang C, Zhang Y, Liu Z. Magnetic enzyme nanogel (MENG): a universal synthetic route for biocatalysts[J]. Chem. Comm., 2012, 48: 3315-3317 |
[60] | Wang R, Zhang Y, Huang J, Lu D, Ge J, Liu Z. Substrate imprinted lipase nanogel for one-step synthesis of chloramphenicol palmitate[J]. Green Chem., 2013, 15: 1155-1158 |
[61] | Ge J, Lei J, Zare R N. Bovine serum albumin-poly(methyl methacrylate) nanoparticles: an example of frustrated phase separation[J]. Nano. Lett., 2011, 11: 2551-2554 |
[62] | Kim J, Grate J W. Single-enzyme nanoparticles armored by a nanometer-scale organic/ inorganic network[J]. Nano. Lett., 2003, 3: 1219-1222 |
[63] | Lele B S, Murata H, Matyjaszewski K, Russell A J. Synthesis of uniform protein-polymer conjugates[J]. Biomacromolecules, 2005, 6: 3380-3387 |
[64] | Boyer C, Bulmus V, Liu J, Davis T P, Stenzel M H, Barner-Kowollik C. Well-defined protein- polymer conjugates via in situ RAFT polymerization[J]. J. Am. Chem. Soc., 2007, 129: 7145-7154 |
[65] | Heredia K L, Bontempo D, Ly T, Byers J T, Halstenberg S, Maynard H D. In situ preparation of protein-“Smart” polymer conjugates with retention of bioactivity[J]. J. Am. Chem. Soc., 2005, 127: 16955- 16960 |
[66] | Ge J, Lei J, Zare R N. Protein-inorganic hybrid nanoflowers[J]. Nat. Nanotechnol., 2012, 7: 428-432 |
[67] | Zhu L, Gong L, Zhang Y, Wang R, Ge J, Liu Z, Zare R N. Rapid detection of phenol using a membrane containing laccase nanoflowers[J]. Chem. Asian J., 2013, 8: 2358-2360 |
[68] | Sun J, Ge J, Liu W, Lan M, Zhang H, Wang P, Wang Y, Niu Z. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor[J]. Nanoscale, 2014, 6: 255-262 |
[69] | Wang L, Wang Y, He R, Zhuang A, Wang X, Zeng J, Hou J G. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance[J]. J. Am. Chem. Soc., 2013, 135: 1272-1275 |
[70] | Deng H, Grunder S, Cordova K E, Valente C, Furukawa H, Hmadeh M, Gándara H, Whalley A C, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart J F, Yaghi O M. Large-pore apertures in a series of metal-organic frameworks[J]. Science, 2012, 336: 1018-1023 |
[71] | Chen Y, Lykourinou V, Vetromile C, Hoang T, Ming L J, Larsen R W, Ma S. How can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows[J]. J. Am. Chem. Soc., 2012, 134: 13188-13191 |
[72] | Lykourinou V, Chen Y, Wang X S, Meng L, Hoang T, Ming L J, Musselman R L, Ma S. Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis[J]. J. Am. Chem. Soc., 2011, 133: 10382-10385 |
[73] | Zhang Y, Dai Y, Hou M, Li T, Ge J, Liu Z. Chemo-enzymatic synthesis of valrubicin using Pluronic conjugated lipase with temperature responsiveness in organic media[J]. RSC Adv., 2013, 3: 22963-22966 |
[1] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[4] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[5] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[6] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[7] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[8] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[9] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[10] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[11] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[12] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[13] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[14] | Jing ZHANG, Tao LIU, Wei ZHANG, Zhenyu CHU, Wanqin JIN. Preparation of a novel separation-sensing membrane and its dynamic monitoring of blood glucose [J]. CIESC Journal, 2023, 74(1): 459-468. |
[15] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||