[1] |
Worrell E, Phylipsen D, Einstein D, Martin N. Energy use and energy intensity of the U.S. chemical industry [R]. LBNL-44314, eScholarship University of California, 2000. http://escholarship.org/uc/item/2925w8g6.
|
[2] |
Philp J C, Ritchie R J, Allan J E M. Biobased chemicals: the convergence of green chemistry with industrial biotechnology [J]. Trends in Biotechnology, 2013, 31: 219-222.
|
[3] |
Lewis N S, Nocera D G. Powering the planet: chemical challenges in solar energy utilization [J]. Proceedings of National Academy Science, 2006, 103: 15729-15735.
|
[4] |
Barber J. Photosynthetic energy conversion: natural and artificial [J]. Chemical Society Review, 2009, 38: 185-196.
|
[5] |
Yang S T, El-Enshasy H A, Thongchul N. Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers[M]. New Jersey: AIChE Wiley, 2013: 1-18.
|
[6] |
Zhu X G, Long S P, Ort D R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? [J]. Current Opinion in Biotechnology, 2008, 19: 153-159.
|
[7] |
Wijffels R H, Barbosa M J. An outlook on microalgal biofuels [J]. Science, 2010, 329: 796-799.
|
[8] |
Yu J. Bio-based products from solar energy and carbon dioxide [J]. Trends in Biotechnology, 2014, 32: 5-10.
|
[9] |
Ammann E C B, Reed L L, Durichek J E Jr. Gas consumption and growth rate of Hydrogenomonas eutropha in continuous culture [J]. Applied Microbiology, 1968, 16: 822-826.
|
[10] |
Morinaga Y, Yamanaka S, Ishizaki A, Hirose Y. Growth characteristics and cell composition of Alcaligenes eutrophus in chemostat culture [J]. Agricultural and Biological Chemistry, 1978, 42: 439-444.
|
[11] |
Yu J, Dow A, Pingali S. The energy efficiency of carbon dioxide fixation by a hydrogen-oxidizing bacterium [J]. International Journal of Hydrogen Energy, 2013, 38: 8683-8690.
|
[12] |
Tanadchangsaeng N, Yu J. Microbial synthesis of polyhydroxybutyrate from glycerol: gluconeogenesis, molecular weight and material properties of biopolyester [J]. Biotechnology and Bioengineering, 2012, 109: 2808-2818.
|
[13] |
Allen J F. Photosynthesis of ATP-electrons, proton pumps, rotors, and poise [J]. Cell, 2002, 110: 273-276.
|
[14] |
Hogrefe C, Romermann D, Friedrich B. Alcaligenes eutrophus hydrogenase genes (Hox) [J]. Journal of Bacteriology, 1984, 158: 43-48.
|
[15] |
Bernhard M, Benelli B, Hochkoeppler A, Zannoni D, Friedrich B. Functional and structural role of the cytochrome b subunit of the membrane-bound hydrogenase complex of Alcaligenes eutrophus H16 [J]. European Journal of Biochemistry, 1997, 248: 179-186.
|
[16] |
Tanaka K, Ishizaki A. Production of poly(D-3-hydroxybutyate) from CO2, H2 and O2 by high cell density autotrophic cultivation of Alcaligenes eutrophus [J]. Biotechnology and Bioengineering, 1995, 45: 268-275.
|
[17] |
Yu J, Chen L. Cost effective recovery and purification of polyhydroxyalkanoates by selective dissolution of cell mass [J]. Biotechnology Progress, 2006, 22: 547-553.
|
[18] |
Yu J, Plackett D, Chen L X L. Kinetics and mechanism of the monomeric products from abiotic hydrolysis of poly[(R)-3-hydroxybutyrate] under acidic and alkaline conditions [J]. Polymer Degradation and Stability, 2005, 89: 289-299.
|
[19] |
Kang S, Yu J. One-pot production of hydrocarbon oil from poly(3-hydroxybutyrate) [J]. RSC Advances, 2014, 4: 14320-14327.
|
[20] |
Kang S, Yu J. Hydrophobic organic compounds from hydrothermal liquefaction of bacterial biomass [J]. Biomass and Bioenergy, 2015, 74: 92-95.
|
[21] |
Gan J, Yan W. Operating condition optimization of corncob hydrothermal conversion for bio-oil production [J]. Applied Energy, 2013, 103: 350-357.
|
[22] |
Akalm M K, Tekin K, Karagoz S. Hydrothermal liquefaction of cornelian cheery stones for bio-oil production [J]. Bioresource Techno- logy, 2012, 110: 682-687.
|
[23] |
Ross A B, Biller P, Kubacki M L, Li H, Lea-Langton A, Jones J M. Hydrothermal processing of microalgae using alkali and organic acids [J]. Fuel, 2010, 89: 2234-2243.
|
[24] |
Vardon D R, Sharma B K, Scott J, Yu G, Wang Z, Schideman L. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure and digested anaerobic sludge [J]. Bioresource Technology, 2011, 102: 8295-8303.
|