CIESC Journal ›› 2017, Vol. 68 ›› Issue (4): 1373-1380.DOI: 10.11949/j.issn.0438-1157.20161421

Previous Articles     Next Articles

Preparation and SO2-resistance of V2O5@CeO2 core-shell microspheres for SCR deNOx

ZHAO Li, XIAO Rui, ZENG Dewang   

  1. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2016-10-08 Revised:2017-01-09 Online:2017-04-05 Published:2017-04-05
  • Supported by:

    supported by the National Science Foundation for Distinguished Younger Scholar of China (51525601).

V2O5@CeO2核壳微球结构的脱硝催化剂制备及其抗硫性能

赵栗, 肖睿, 曾德望   

  1. 东南大学能源与环境学院, 能源热转换及其过程测控教育部重点实验室, 江苏 南京 210096
  • 通讯作者: 肖睿
  • 基金资助:

    国家杰出青年科学基金项目(51525601)。

Abstract:

V2O5@CeO2 core-shell microspheres are prepared by electrostatic self-assembly technique and supported on TiO2. Influences of dispersant (SHP) on zeta potential are investigated. Morphology of obtained microspheres are observed by TEM and FESEM and the catalytic performance for the selective catalytic reduction of NOx with NH3 (NH3-SCR) was investigated in a fixed-bed stainless steel reactor. The catalysts are characterized by BET and in situ DRIFTS analysis of NH3 adsorption. The results show that the nanoparticle surface is negatively charged by dispersant (SHP) and within a certain range, the higher the concentration of SHP is, the greater the zeta potential are. Catalysts with mass fraction of 1% V2O5 and 5% CeO2 show high activity with the NOx conversion over 80% from 260 to 400℃. Compared with catalysts prepared by the traditional impregnation method, the core-shell catalysts present higher SO2 and H2O resistance at low SO2 concentration. When the flue gas contains 571 mg·m-3 SO2 and 15%(vol) H2O, the NOx conversion can be maintained at a high level of 80% after 7 hours.

Key words: electrostatic self-assembly, core-shell, SCR deNOx, SO2 resistance

摘要:

利用静电自组装法制备了V2O5@CeO2核壳微球结构,并负载在TiO2上。考察了分散剂六偏磷酸钠(SHP(对表面zeta电位的影响,采用扫描电镜(SEM(、投射电镜(TEM(观察了核壳结构的形貌,并在固定床上进行了脱硝性能测试,并通过比表面积(BET(、氨气吸附漫反射(in situ DRIFTS(等进行表征。结果表明:SHP使纳米颗粒表面带负电,且一定范围内SHP浓度越高,zeta电位越大;含质量分数1%V2O5、5% CeO2的催化剂,在260~400℃间具有80%以上的脱硝效率,对比了该核壳结构与传统浸渍法制备催化剂的抗硫抗水性,烟气中含15%(体积分数(H2O,SO2含量较低时,脱硝性能优于传统浸渍法制备的催化剂。

关键词: 静电自组装, 核壳结构, SCR脱硝, 硫中毒

CLC Number: