[1] |
赵兵. 燃煤锅炉烟气中一氧化氮排放浓度测量[J]. 资源节约与环保, 2014, (2):27-27.ZHAO B. Measurement of concentration of NO in flue gas of coal-fired boiler[J]. Resources Economization & Environment Protection, 2014, (2):27-27.
|
[2] |
闫志勇, 高翔, 吴杰, 等. V2O5-WO3-MoO3/TiO2催化剂制备及NH3选择性还原NOx的试验研究[J]. 动力工程学报, 2007, 27(2):282-286.YAN Z Y, GAO X, WU J, et al. Experimental study on preparation of V2O5-WO3-MoO3/TiO2 catalysts and selective reduction of NOx with NH3[J]. Journal of Power Engineering, 2007, 27(2):282-281.
|
[3] |
GAO Y, LUAN T, LV T, et al. Performance of V2O5-WO3-MoO3/TiO2 catalyst for selective catalytic reduction of NOx by NH3[J]. Chinese Journal of Chemical Engineering, 2013, (1):1-7.
|
[4] |
PENG Y, LI K, LI J. Identification of the active sites on CeO2-WO3 catalysts for SCR of NOx with NH3:an in situ IR and Raman spectroscopy study[J]. Applied Catalysis B Environmental, 2013, s140/141(2):483-492.
|
[5] |
SHISHKIN A, CARLSSON P A, HÄRELIND H, et al. Effect of preparation procedure on the catalytic properties of Fe-ZSM-5 as SCR catalyst[J]. Topics in Catalysis, 2013, 56(9/10):567-575.
|
[6] |
BLAKEMAN P G, BURKHOLDER E M, CHEN H Y, et al. The role of pore size on the thermal stability of zeolite supported Cu SCR catalysts[J]. Catalysis Today, 2014, 231(8):56-63.
|
[7] |
王龙飞, 张亚平, 郭婉秋, 等. WO3/TiO2-ZrO2脱硝催化剂制备及其NH3活化机理[J]. 化工学报, 2015, 66(10):3903-3910.WANG L F, ZHANG Y P, GUO W Q, et al. Preparation of WO3/TiO2-ZrO2 catalyst for selective catalytic reduction and mechanism of NH3 activation[J]. CIESC Journal, 2015, 66(10):3903-3910.
|
[8] |
BERNHARD A M, PEITZ D, ELSENER M, et al. Catalytic urea hydrolysis in the selective catalytic reduction of NOx:catalyst screening and kinetics on anatase TiO2 and ZrO2[J]. Catal. Sci. Technol., 2013, 3(4):942-951.
|
[9] |
XU Z, ZHAO H, WEI Y, et al. Self-assembly template combustion synthesis of a core-shell CuO@TiO2-Al2O3, hierarchical structure as an oxygen carrier for the chemical-looping processes[J]. Combustion & Flame, 2015, 162(8):3030-3045.
|
[10] |
DU C, SU J, LUO W, et al. Graphene supported Ag@Co core-shell nanoparticles as efficient catalysts for hydrolytic dehydrogenation of amine boranes[J]. Journal of Molecular Catalysis A Chemical, 2014, s383/384(3):38-45.
|
[11] |
ZHANG L, ZHANG D, ZHANG J, et al. Design of meso-TiO2@MnOx-CeOx/CNTs with a core-shell structure as DeNOx catalysts:promotion of activity, stability and SO2-tolerance.[J]. Nanoscale, 2013, 5(20):9821-9.
|
[12] |
SHEN J, HU Y, LI C, et al. Layer-by-layer self-assembly of graphene nanoplatelets[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2009, 25(11):6122-8.
|
[13] |
李丽, 胡中爱, 杨玉英, 等. MnO2/NiCo2O4的静电自组装合成及其电化学性能[J]. 物理化学学报, 2014, 30(5):899-907.LI L, HU Z A, YANG Y Y, et al. Synthesis of a MnO2/NiCo2O4 composite by electrostatic self-assembly and its electrochemical performance[J]. Acta Physico-Chimica Sinica, 2014, 30(5):899-907.
|
[14] |
黄怡, 李梅. 用层层自组装法制备PS/SnO2核壳微球[J]. 材料导报, 2006, 20(10):143-146.HUANG Y, LI M. Preparation of PS/SnO2core-shell microspheres by layer-by-layer assembly technique[J]. Materials Review, 2006, 20(10):143-146.
|
[15] |
XIANG Y, LU S, JIANG S P. ChemInform abstract:layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors[J]. Chemical Society Reviews, 2013, 44(4):7291-7321.
|
[16] |
唐雪萍. 纳米V2O5/活性焦催化剂的制备[D]. 武汉:武汉科技大学, 2012.TANG X P. Preparation of nano V2O5/AC catalyst[D]. Wuhan:Wuhan University of Science and Technology, 2012.
|
[17] |
潘国梁, 贾晓斌, 魏惠华, 等. 药用微乳伪三元相图的几种制备方法比较研究[J]. 中国药房, 2006, 17(1):21-23.PAN G L, JIA X B, WEI H H, et al. Comparison among several preparation methods for pseudoternary phase diagrams of pharmaceutical microemulsions[J]. China Pharmacy, 2006, 17(1):21-23.
|
[18] |
宋晓岚, 邱冠周, 杨振华, 等. 水相介质中纳米CeO2的分散行为[J]. 稀有金属, 2005, 29(2):167-172.SONG X L, QIU G Z, YANG Z H, et al. Dispersion behavior of nanometer CeO2 in aqueous medium[J]. Chinese Journal of Rare Metals, 2005, 29(2):167-172.
|
[19] |
张亚平, 郭婉秋, 王龙飞, 等. V2O5-CeO2/TiO2-ZrO2催化剂表征及NH3还原NOx性能[J]. 催化学报, 2015, 36(10):1701-1710.ZHANG Y P, GUO W Q, WANG L F, et al. Characterization and activity of V2O5-CeO2/TiO2-ZrO2catalysts for NH3-selective catalytic reduction of NO[J]. Gastroenterology, 2015, 142(5):S-45.
|
[20] |
TING C, BIN G, HE L, et al. In situ DRIFTS study of the mechanism of low temperature selective catalytic reduction over manganese-iron oxides[J]. Chinese Journal of Catalysis, 2014, 35:294-301.
|
[21] |
THIRUPATHI B, SMIRNIOTIS P G. Nickel-doped Mn/TiO2, as an efficient catalyst for the low-temperature SCR of NO with NH3:catalytic evaluation and characterizations[J]. Journal of Catalysis, 2012, 288(4):74-83.
|
[22] |
QIAN L, HUA C G, PING L, et al. In situ IR studies of selective catalytic reduction of NO with NH3 on Ce-Ti amorphous oxides[J]. Chinese Journal of Catalysis, 2014, 35:1289-1298.
|
[23] |
王强, 谭成玉. 一种高山红景天成分FT-IR和FT-Raman光谱的研究[J]. 光散射学报, 2000, 12(1):30-32.WANG Q, TAN C Y. Studies on the FT-IR and FT -Raman spectra of a compound from Rhodiola sachalinensis A. Bor.[J]. Chinese Journal of Light Scattering, 2000, 12(1):30-32.
|
[24] |
车勇, 李松涛, 张永清, 等. 酸枣不同部位的红外光谱分析[J]. 林产化学与工业, 2012, 32(2):117-120.CHE Y, LI S T, ZHANG Y Q, et al. Analysis of different part of Z. jujuba. var. spinosa by Fourier transform infrared spectroscopy[J]. Chemistry and Industry of Forest Products, 2012, 32(2):117-120.
|
[25] |
QI G, YANG R T, CHANG R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B:Environmental, 2004, 51(2):93-106.
|
[26] |
RAMIS G, LARRUBIA M A. An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe2O3/Al2O3 SCR catalysts[J]. Journal of Molecular Catalysis A:Chemical, 2004, 215(1):161-167.
|
[27] |
KOEBEL M, MADIA G, RAIMONDI F, et al. Enhanced reoxidation of vanadia by NO2 in the fast SCR reaction[J]. Journal of Catalysis, 2002, 209(1):159-165.
|
[28] |
XIONG Y, TANG C, YAO X, et al. Effect of metal ions doping (M=Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Applied Catalysis A:General, 2015, 495:206-216.
|
[29] |
UNDERWOOD G M, MILLER T M, GRASSIAN V H. Transmission FT-IR and Knudsen cell study of the heterogeneous reactivity of gaseous nitrogen dioxide on mineral oxide particles[J]. The Journal of Physical Chemistry A, 1999, 103(31):6184-6190.
|
[30] |
KANTCHEVA M. Identification, stability, and reactivity of NOx species adsorbed on titania-supported manganese catalysts[J]. Journal of Catalysis, 2001, 204(2):479-494.
|