[1] |
HUNGATE B A, DUKES J S, SHAW M R, et al. Nitrogen and climate change[J]. Science, 2003, 302(5650):1512-1513.
|
[2] |
LI L, XU J, HU J, et al. Reducing nitrous oxide emissions to mitigate climate change and protect the ozone layer[J]. Environmental Science & Technology, 2014, 48(9):5290-5297.
|
[3] |
RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O):the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949):123-125.
|
[4] |
ODAKA M, KOIKE N, SUZUKI H. Influence of catalyst deactivation on N2O emissions from automobiles[J]. Chemosphere-Global Change Science, 2000, 2(3):413-423.
|
[5] |
RUSSO N, MESCIA D, FINO D, et al. N2O decomposition over perovskite catalysts[J]. Industrial & Engineering Chemistry Research, 2007, 46(12):4226-4231.
|
[6] |
LIU Z, HE F, MA L, et al. Recent advances in catalytic decomposition of N2O on noble metal and metal oxide catalysts[J]. Catalysis Surveys from Asia, 2016, 20(3):121-132
|
[7] |
李孟丽, 杨晓龙, 唐立平, 等. N2O的催化分解研究[J]. 化学进展, 2012, (9):1801-1817. LI M L, YANG X L, TANG L P, et al. Catalysts for catalytic decomposition of nitrous oxide[J]. Progress in Chemistry, 2012, (9):1801-1817.
|
[8] |
AHRENS M, MARIE O, BAZIN P, et al. Fe-H-BEA and Fe-H-ZSM-5 for NO2 removal from ambient air-a detailed in situ and operando FTIR study revealing an unexpected positive water-effect[J]. Journal of Catalysis, 2010, 271(1):1-11.
|
[9] |
MI G, LI J, ZHANG J, et al. Reaction kinetics of phenol synthesis through one-step oxidation of benzene with N2O over Fe-ZSM-5 zeolite[J]. Korean Journal of Chemical Engineering, 2010, 27(6):1700-1706.
|
[10] |
ZHANG R, LIU N, LEI Z, et al. Selective transformation of various nitrogen-containing exhaust gases toward N2 over zeolite catalysts[J]. Chem. Rev., 2016, 116(6):3658-3721.
|
[11] |
?EMVA P, LESAR A, KOBAL I, et al. Interpretation of kinetic isotope effects in the decomposition of N2O over CoO[J]. Chemical Physics, 2001, 264(3):413-418.
|
[12] |
赵晓旭, 程党国, 陈丰秋, 等. N2O直接分解催化剂的研究进展[J]. 化工进展, 2009, 28(9):1562-1567. ZHAO X X, CHENG D G, CHEN F Q, et al. Review of catalysts for catalytic decomposition of N2O[J]. Chemical Industry and Engineering Progress, 2009, 28(9):1562-1567.
|
[13] |
SUN Q, ZHANG X Q, WANG Y, et al. Recent progress on core-shell nanocatalysts[J]. Chinese Journal of Catalysis, 2015, 36(5):683-691.
|
[14] |
BAO J, HE J, ZHANG Y, et al. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction[J]. Angewandte Chemie, 2008, 120(2):359-362.
|
[15] |
YANG G, HE J, YONEYAMA Y, et al. Preparation, characterization and reaction performance of H-ZSM-5/cobalt/silica capsule catalysts with different sizes for direct synthesis of isoparaffins[J]. Applied Catalysis A:General, 2007, 329:99-105.
|
[16] |
KANG K M, SHIM I W, KWAK H Y. Mixed and autothermal reforming of methane with supported Ni catalysts with a core/shell structure[J]. Fuel Processing Technology, 2012, 93(1):105-114.
|
[17] |
KIM H W, KANG K M, KWAK H Y. Preparation of supported Ni catalysts with a core/shell structure and their catalytic tests of partial oxidation of methane[J]. International Journal of Hydrogen Energy, 2009, 34(8):3351-3359.
|
[18] |
KIM H W, KANG K M, KWAK H Y, et al. Preparation of supported Ni catalysts on various metal oxides with core/shell structures and their tests for the steam reforming of methane[J]. Chemical Engineering Journal, 2011, 168(2):775-783.
|
[19] |
颜秀茹, 白天, 霍明亮, 等. 核-壳式纳米SnO2/TiO2 光催化剂的制备和性能[J]. 催化学报, 2004, 25(2):120-124. YAN X R, BAI T, HUO M L, et al. Preparation and photocatalytic properties of nanometer SnO2/TiO2 of nucleus-shell structure[J]. Chinese Journal of Catalysis, 2004, 25(2):120-124.
|
[20] |
SREEDHAR B, RADHIKA P, NEELIMA B, et al. Selective oxidation of sulfides with H2O2 catalyzed by silica-tungstate core-shell nanoparticles[J]. Catalysis Communications, 2008, 10(1):39-44.
|
[21] |
ZENG B, HOU B, JIA L, et al. Fischer-Tropsch synthesis over different structured catalysts:the effect of silica coating onto nanoparticles[J]. Journal of Molecular Catalysis A:Chemical, 2013, 379:263-268.
|
[22] |
GRAF C, VOSSEN D L J, IMHOF A, et al. A general method to coat colloidal particles with silica[J]. Langmuir, 2003, 19(17):6693-6700.
|
[23] |
ZENG B, HOU B, JIA L, et al. The intrinsic effects of shell thickness on the Fischer-Tropsch synthesis over core-shell structured catalysts[J]. Catalysis Science & Technology, 2013, 3(12):3250-3255.
|
[24] |
GONZALEZ O, PEREZ H, NAVARRO P, et al. Use of different mesostructured materials based on silica as cobalt supports for the Fischer-Tropsch synthesis[J]. Catalysis Today, 2009, 148(1):140-147.
|
[25] |
宋涛, 廖景明, 肖军, 等. 生物质活性炭微孔和中孔结构对CO2吸附性能的影响[J]. 新型碳材料, 2015, 30(2):156-166. SONG T, LIAO J M, XIAO J, et al. Effect of micropore and mesopore structure on CO2 adsorption by activated carbons from biomass[J]. New Carbon Materials, 2015, 30(2):156-166.
|
[26] |
CARRADO K A, XU L. Materials with controlled mesoporosity derived from synthetic polyvinylpyrrolidone-clay composites[J]. Microporous and Mesoporous Materials, 1999, 27(1):87-94.
|
[27] |
HARRISON P G, BALL I K, DANIELL W, et al. Cobalt catalysts for the oxidation of diesel soot particulate[J]. Chemical Engineering Journal, 2003, 95(1):47-55.
|
[28] |
BAHLAWANE N, RIVERA E F, KOHSE-HOINGHAUS K, et al. Characterization and tests of planar Co3O4 model catalysts prepared by chemical vapor deposition[J]. Applied Catalysis B:Environmental, 2004, 53(4):245-255.
|
[29] |
LIN H Y, CHEN Y W. The mechanism of reduction of cobalt by hydrogen[J]. Materials Chemistry and Physics, 2004, 85(1):171-175.
|
[30] |
LUALDI M, LOGDBERG S, DI CARLO G, et al. Evidence for diffusion-controlled hydrocarbon selectivities in the Fischer-Tropsch synthesis over cobalt supported on ordered mesoporous silica[J]. Topics in Catalysis, 2011, 54(16/17/18):1175-1184.
|
[31] |
ROSYNEK M P, POLANSKY C A. Effect of cobalt source on the reduction properties of silica-supported cobalt catalysts[J]. Applied Catalysis, 1991, 73(1):97-112.
|
[32] |
ZHANG C, ZHANG Z, SUI C, et al. Catalytic decomposition of N2O over Co-Ti oxide catalysts:interaction between Co and Ti oxide[J]. ChemCatChem, 2016, 8:2155-2164.
|