CIESC Journal ›› 2018, Vol. 69 ›› Issue (4): 1493-1499.DOI: 10.11949/j.issn.0438-1157.20170998

Previous Articles     Next Articles

Preparation of monodispersed core-shell Co3O4@SiO2 catalyst and its application in N2O catalytic decomposition

QIU Yuan, WANG Changzhen, LI Haitao, HU Xiaobo, WANG Yongzhao, ZHAO Yongxiang   

  1. Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, Shanxi, China
  • Received:2017-07-28 Revised:2017-09-12 Online:2018-04-05 Published:2018-04-05
  • Supported by:

    supported by the National Natural Science Foundation of China (21603127) and the Natural Science Foundation of Shanxi Province (201601D202020).

单分散Co3O4@SiO2核壳催化剂的制备及N2O催化分解性能

仇媛, 王长真, 李海涛, 胡晓波, 王永钊, 赵永祥   

  1. 山西大学精细化学品教育部工程研究中心, 山西 太原 030006
  • 通讯作者: 赵永祥
  • 基金资助:

    国家自然科学基金项目(21603127);山西省应用基础研究基金项目(201601D202020)。

Abstract:

N2O is an important greenhouse gas with significant destructive effect on ozone layer. Direct catalytic decomposition is one of the most cost-effective ways to remove N2O. In recent years, plenty of researches on direct catalytic decomposition of N2O have been focusing on supported cobalt oxide catalysts due to their excellent low-temperature catalytic performance. An encapsulated cobalt-based core-shell material was first introduced into the N2O direct catalytic decomposition reaction. The dimension-limited core structure and mesoporous shell structure could effectively improve the metal dispersion, reduce particle size, and increase contact interface between active metal oxide and reactants, so that low temperature catalytic activity was significantly enhanced in N2O catalytic decomposition. Furthermore, a series of Co3O4@SiO2 spherical core-shell catalysts with different metal content were prepared to investigate the effect of encapsulation structure on catalytic performance. Characterizations on catalysts with techniques such as X-ray fluorescence spectroscopy (XRF), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), N2 adsorption-desorption and hydrogen temperature-programmed reduction (H2-TPR) indicated that catalysts with more active Co sites have better activity under premise of stable monodisperse core-shell structure.

Key words: greenhouse gas emission, N2O direct catalytic decomposition, nanomaterial, Co3O4@SiO2, core-shell catalyst

摘要:

N2O是一种重要的温室气体,且对臭氧层有很大的破坏作用,而直接催化分解法是除去N2O最经济有效的方法之一。针对目前报道较多的钴氧化物催化剂活性较差的问题,将包覆型Co3O4核壳材料引入N2O直接催化分解反应,利用核壳结构的限域特性与壳层的多孔孔道使Co3O4分散性增加,粒径减小,金属载体相互作用与接触反应界面增强,从而提高了催化剂在N2O直接催化分解反应中的低温活性。此外,还制备了一系列不同金属含量的Co3O4@SiO2球形核壳催化剂来研究包覆结构对催化剂性能的影响,通过X射线荧光光谱(XRF)、透射电镜(TEM)、X射线衍射(XRD)、N2物理吸附、H2-程序升温还原(H2-TPR)等表征,证实在保证稳定单分散核壳结构的前提下,活性Co3O4位点越多,催化剂反应活性越好。

关键词: 温室气体减排, N2O直接催化分解, 纳米材料, Co3O4@SiO2, 核壳催化剂

CLC Number: