CIESC Journal ›› 2018, Vol. 69 ›› Issue (4): 1493-1499.DOI: 10.11949/j.issn.0438-1157.20170998
Previous Articles Next Articles
QIU Yuan, WANG Changzhen, LI Haitao, HU Xiaobo, WANG Yongzhao, ZHAO Yongxiang
Received:
2017-07-28
Revised:
2017-09-12
Online:
2018-04-05
Published:
2018-04-05
Supported by:
supported by the National Natural Science Foundation of China (21603127) and the Natural Science Foundation of Shanxi Province (201601D202020).
仇媛, 王长真, 李海涛, 胡晓波, 王永钊, 赵永祥
通讯作者:
赵永祥
基金资助:
国家自然科学基金项目(21603127);山西省应用基础研究基金项目(201601D202020)。
CLC Number:
QIU Yuan, WANG Changzhen, LI Haitao, HU Xiaobo, WANG Yongzhao, ZHAO Yongxiang. Preparation of monodispersed core-shell Co3O4@SiO2 catalyst and its application in N2O catalytic decomposition[J]. CIESC Journal, 2018, 69(4): 1493-1499.
仇媛, 王长真, 李海涛, 胡晓波, 王永钊, 赵永祥. 单分散Co3O4@SiO2核壳催化剂的制备及N2O催化分解性能[J]. 化工学报, 2018, 69(4): 1493-1499.
[1] | HUNGATE B A, DUKES J S, SHAW M R, et al. Nitrogen and climate change[J]. Science, 2003, 302(5650):1512-1513. |
[2] | LI L, XU J, HU J, et al. Reducing nitrous oxide emissions to mitigate climate change and protect the ozone layer[J]. Environmental Science & Technology, 2014, 48(9):5290-5297. |
[3] | RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O):the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949):123-125. |
[4] | ODAKA M, KOIKE N, SUZUKI H. Influence of catalyst deactivation on N2O emissions from automobiles[J]. Chemosphere-Global Change Science, 2000, 2(3):413-423. |
[5] | RUSSO N, MESCIA D, FINO D, et al. N2O decomposition over perovskite catalysts[J]. Industrial & Engineering Chemistry Research, 2007, 46(12):4226-4231. |
[6] | LIU Z, HE F, MA L, et al. Recent advances in catalytic decomposition of N2O on noble metal and metal oxide catalysts[J]. Catalysis Surveys from Asia, 2016, 20(3):121-132 |
[7] | 李孟丽, 杨晓龙, 唐立平, 等. N2O的催化分解研究[J]. 化学进展, 2012, (9):1801-1817. LI M L, YANG X L, TANG L P, et al. Catalysts for catalytic decomposition of nitrous oxide[J]. Progress in Chemistry, 2012, (9):1801-1817. |
[8] | AHRENS M, MARIE O, BAZIN P, et al. Fe-H-BEA and Fe-H-ZSM-5 for NO2 removal from ambient air-a detailed in situ and operando FTIR study revealing an unexpected positive water-effect[J]. Journal of Catalysis, 2010, 271(1):1-11. |
[9] | MI G, LI J, ZHANG J, et al. Reaction kinetics of phenol synthesis through one-step oxidation of benzene with N2O over Fe-ZSM-5 zeolite[J]. Korean Journal of Chemical Engineering, 2010, 27(6):1700-1706. |
[10] | ZHANG R, LIU N, LEI Z, et al. Selective transformation of various nitrogen-containing exhaust gases toward N2 over zeolite catalysts[J]. Chem. Rev., 2016, 116(6):3658-3721. |
[11] | ?EMVA P, LESAR A, KOBAL I, et al. Interpretation of kinetic isotope effects in the decomposition of N2O over CoO[J]. Chemical Physics, 2001, 264(3):413-418. |
[12] | 赵晓旭, 程党国, 陈丰秋, 等. N2O直接分解催化剂的研究进展[J]. 化工进展, 2009, 28(9):1562-1567. ZHAO X X, CHENG D G, CHEN F Q, et al. Review of catalysts for catalytic decomposition of N2O[J]. Chemical Industry and Engineering Progress, 2009, 28(9):1562-1567. |
[13] | SUN Q, ZHANG X Q, WANG Y, et al. Recent progress on core-shell nanocatalysts[J]. Chinese Journal of Catalysis, 2015, 36(5):683-691. |
[14] | BAO J, HE J, ZHANG Y, et al. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction[J]. Angewandte Chemie, 2008, 120(2):359-362. |
[15] | YANG G, HE J, YONEYAMA Y, et al. Preparation, characterization and reaction performance of H-ZSM-5/cobalt/silica capsule catalysts with different sizes for direct synthesis of isoparaffins[J]. Applied Catalysis A:General, 2007, 329:99-105. |
[16] | KANG K M, SHIM I W, KWAK H Y. Mixed and autothermal reforming of methane with supported Ni catalysts with a core/shell structure[J]. Fuel Processing Technology, 2012, 93(1):105-114. |
[17] | KIM H W, KANG K M, KWAK H Y. Preparation of supported Ni catalysts with a core/shell structure and their catalytic tests of partial oxidation of methane[J]. International Journal of Hydrogen Energy, 2009, 34(8):3351-3359. |
[18] | KIM H W, KANG K M, KWAK H Y, et al. Preparation of supported Ni catalysts on various metal oxides with core/shell structures and their tests for the steam reforming of methane[J]. Chemical Engineering Journal, 2011, 168(2):775-783. |
[19] | 颜秀茹, 白天, 霍明亮, 等. 核-壳式纳米SnO2/TiO2 光催化剂的制备和性能[J]. 催化学报, 2004, 25(2):120-124. YAN X R, BAI T, HUO M L, et al. Preparation and photocatalytic properties of nanometer SnO2/TiO2 of nucleus-shell structure[J]. Chinese Journal of Catalysis, 2004, 25(2):120-124. |
[20] | SREEDHAR B, RADHIKA P, NEELIMA B, et al. Selective oxidation of sulfides with H2O2 catalyzed by silica-tungstate core-shell nanoparticles[J]. Catalysis Communications, 2008, 10(1):39-44. |
[21] | ZENG B, HOU B, JIA L, et al. Fischer-Tropsch synthesis over different structured catalysts:the effect of silica coating onto nanoparticles[J]. Journal of Molecular Catalysis A:Chemical, 2013, 379:263-268. |
[22] | GRAF C, VOSSEN D L J, IMHOF A, et al. A general method to coat colloidal particles with silica[J]. Langmuir, 2003, 19(17):6693-6700. |
[23] | ZENG B, HOU B, JIA L, et al. The intrinsic effects of shell thickness on the Fischer-Tropsch synthesis over core-shell structured catalysts[J]. Catalysis Science & Technology, 2013, 3(12):3250-3255. |
[24] | GONZALEZ O, PEREZ H, NAVARRO P, et al. Use of different mesostructured materials based on silica as cobalt supports for the Fischer-Tropsch synthesis[J]. Catalysis Today, 2009, 148(1):140-147. |
[25] | 宋涛, 廖景明, 肖军, 等. 生物质活性炭微孔和中孔结构对CO2吸附性能的影响[J]. 新型碳材料, 2015, 30(2):156-166. SONG T, LIAO J M, XIAO J, et al. Effect of micropore and mesopore structure on CO2 adsorption by activated carbons from biomass[J]. New Carbon Materials, 2015, 30(2):156-166. |
[26] | CARRADO K A, XU L. Materials with controlled mesoporosity derived from synthetic polyvinylpyrrolidone-clay composites[J]. Microporous and Mesoporous Materials, 1999, 27(1):87-94. |
[27] | HARRISON P G, BALL I K, DANIELL W, et al. Cobalt catalysts for the oxidation of diesel soot particulate[J]. Chemical Engineering Journal, 2003, 95(1):47-55. |
[28] | BAHLAWANE N, RIVERA E F, KOHSE-HOINGHAUS K, et al. Characterization and tests of planar Co3O4 model catalysts prepared by chemical vapor deposition[J]. Applied Catalysis B:Environmental, 2004, 53(4):245-255. |
[29] | LIN H Y, CHEN Y W. The mechanism of reduction of cobalt by hydrogen[J]. Materials Chemistry and Physics, 2004, 85(1):171-175. |
[30] | LUALDI M, LOGDBERG S, DI CARLO G, et al. Evidence for diffusion-controlled hydrocarbon selectivities in the Fischer-Tropsch synthesis over cobalt supported on ordered mesoporous silica[J]. Topics in Catalysis, 2011, 54(16/17/18):1175-1184. |
[31] | ROSYNEK M P, POLANSKY C A. Effect of cobalt source on the reduction properties of silica-supported cobalt catalysts[J]. Applied Catalysis, 1991, 73(1):97-112. |
[32] | ZHANG C, ZHANG Z, SUI C, et al. Catalytic decomposition of N2O over Co-Ti oxide catalysts:interaction between Co and Ti oxide[J]. ChemCatChem, 2016, 8:2155-2164. |
[1] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[2] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[3] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[4] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[5] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[6] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[7] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[8] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[9] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[10] | Jing ZHANG, Tao LIU, Wei ZHANG, Zhenyu CHU, Wanqin JIN. Preparation of a novel separation-sensing membrane and its dynamic monitoring of blood glucose [J]. CIESC Journal, 2023, 74(1): 459-468. |
[11] | Hao ZHANG, Ziyue WANG, Yujie CHENG, Xiaohui HE, Hongbing JI. Progress in the mass production of single-atom catalysts [J]. CIESC Journal, 2023, 74(1): 276-289. |
[12] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[13] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[14] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[15] | Lin PENG, Mingxin NIU, Yu BAI, Kening SUN. Preparation of hollow sulfur spheres-MoS2/rGO composite and its application in lithium-sulfur batteries [J]. CIESC Journal, 2022, 73(8): 3688-3698. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 971
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||