[1] |
张大治, 魏迎旭, 沈江汉, 等. 氯甲烷在镁修饰的ZSM-5分子筛催化剂上催化转化研究[J]. 天然气化工, 2006, 31(3): 14-17.
|
|
ZHANG D Z, WEI Y X, SHEN J H, et al. Chloromethane conversion over Mg modified ZSM-5 zeolite catalysts[J]. Natural Gas Chemical Industry, 2006, 31(3): 14-17.
|
[2] |
陈庆龄, 钱伯张. 天然气化工发展现状[J]. 现代化工, 2002, 22(5): 1-4.
|
|
CHEN Q L, QIAN B Z. Current situation of nature gas chemical industry[J]. Modern Chemical Industry, 2002, 22(5): 1-4.
|
[3] |
SOUSA-AGUIAR E F,APPEL L G,MOTA C. Natural gas chemical transformations: the path to refining in the future[J]. Catalysis Today, 2005, 101(1): 3-7.
|
[4] |
HOLMEN A, OLSVIK O, ROKSTAD O A. Pyrolysis of nature gas: chemistry and process concepts[J]. Fuel Processing Technology, 1995, 42(2/3): 249-267.
|
[5] |
HOLMEN A, ROKSTAD O A, SOLBAKKEN A. High-temperature pyrolysis of hydrocarbons(Ⅰ): Methane to acetylene[J]. Industrial & Engineering Chemistry Process Design & Development, 1976, 15(3): 439-444.
|
[6] |
LIU R S, IWAMOTO M, LUNSFORD J H. Partial oxidation of methane by nitrous oxide over molybdenum oxide supported on silica[J]. Journal of the Chemical Society, Chemical Communications, 1982, 1(1): 78-79.
|
[7] |
雍瑞生, 谭斌, 王科. 天然气化工的技术进展与发展机遇[J]. 天然气化工, 2009, 34(4): 70-75.
|
|
YONG R S, TAN B, WANG K. Progress in the technologies for production of chemicals from natural gas and development opportunity[J]. Natural Gas Chemical Industry, 2009, 34(4): 70-75.
|
[8] |
白尔铮. 费托合成燃料的经济性及发展前景[J]. 化工进展, 2004, 23(4): 370-374.
|
|
BAI E Z. Economics and prospects of FT synfuels[J]. Chemical Industry and Engineering Progress, 2004, 23(4): 370-374.
|
[9] |
陈建钢, 相宏伟, 李永旺, 等. 费托法合成液体燃料关键技术研究进展[J]. 化工学报, 2003, 54(4): 516-523.
|
|
CHEN J G, XIANG H W, LI Y W, et al. Advance in key techniques of Fischer-Tropsch synthesis for liquid fuel production[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(4): 516-523.
|
[10] |
XIA X R, BI Y L, WU T H, et al. An infrared spectroscopic study of the mechanism of chloromethane conversion to higher hydrocarbons on HZSM-5 catalyst[J]. Catalysis Letters, 1995, 33(1): 75-90.
|
[11] |
NORONHA L A, SOUZA-AGUIAR E F, MOTA C J A. Conversion of chloromethane to light olefins catalyzed by ZSM-5 zeolites[J]. Catalysis Today, 2005, 101(1): 9-13.
|
[12] |
JENS K J. Methane conversion via methylchloride: condensation of methylchloride to light hydrocarbons[J]. Studies in Surface Science & Catalysis, 1988, 36: 491-495.
|
[13] |
LERSCH P, BALLDERMANN F. Conversion of chloromethane over metal-exchanged ZSM-5 to higher hydrocarbons[J]. Applied Catalysis, 1991, 75(1): 133-152.
|
[14] |
SUN Y, CAMPBELL S M, LUNSFORD J H, et al. The catalytic conversion of methyl chloride to ethylene and propylene over phosphorus-modified Mg-ZSM-5 zeolites[J]. Journal of Catalysis, 1993, 143(1): 32-44.
|
[15] |
JAUMAIN D, SU B L. Direct catalytic conversion of chloromethane to higher hydrocarbons over various protonic and cationic zeolite catalysts as studied by in-situ FTIR and catalytic testing[J]. Studies in Surface Science and Catalysis, 2000, 130: 1607-1612.
|
[16] |
JAUMAIN D, SU B L. Direct catalytic conversion of chloromethane to higher hydrocarbons over a series of ZSM-5 zeolites exchanged with alkali cations[J]. Journal of Molecular Catalysis A: Chemical, 2003, 197(1/2): 263-273.
|
[17] |
WEI Y X, ZHANG D Z, XU L, et al. New route for light olefins production from chloromethane over HSAPO-34 molecular sieve[J]. Catalysis Today, 2005, 106(1): 84-89.
|
[18] |
LORKOVIC I M, YILMAZ A, YILMAZ G A, et al. A novel integrated process for the functionalization of methane and ethane: bromine as mediator[J]. Catalysis Today, 2004, 98(1): 317-322.
|
[19] |
LIU Z, HUANG L, LI W S, et al. Higher hydrocarbons from methane condensation mediated by HBr[J]. Journal of Molecular Catalysis A: Chemical, 2007, 273(1/2): 14-20.
|
[20] |
ZHANG D Z, WEI Y X, XU L, et al. Chloromethane conversion to higher hydrocarbons over zeolites and SAPOs[J]. Catalysis Letters, 2006, 109(1): 97-101.
|
[21] |
史风华, 宋永吉, 罗潇然, 等. 六铝酸盐负载CuO催化还原NO性能[J]. 环境化学, 2012, 31(8): 1222-1226.
|
|
SHI F H, SONG Y J, LUO X R, et al. Catalytic reduction of NO over CuO/LaAl12O19 catalysts[J]. Environment Chemistry, 2012, 31(8): 1222-1226.
|
[22] |
BIESINGER M C, LAU L W M, GERSON A R, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn[J]. Applied Surface Science, 2010, 257(3): 887-898.
|
[23] |
POULSTON S, PARLETT P M, STONE P, et al. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES[J]. Surface and Interface Analysis, 1996, 24(12): 811-820.
|
[24] |
BENNICI S, GERVASINI A, RAVASIO N, et al. Optimization of tailoring of CuOx species of silica alumina supported catalysts for the selective catalytic reduction of NOx[J]. Journal of Physical Chemistry B, 2003, 107(22): 5168-5176.
|
[25] |
AUROUX A, GERVASINI A, GUIMON C. Acidic character of metal-loaded amorphous and crystalline silica-aluminas determined by XPS and adsorption calorimetry[J]. Journal of Physical Chemistry B, 1999, 103(34): 7195-7205.
|
[26] |
SONG Y, ZHU X, XIE S, et al. The effect of acidity on olefin aromatization over potassium modified ZSM-5 catalysts[J]. Catalysis Letter, 2004, 97(1): 31-36.
|
[27] |
LOBREE L J, HWANG I C, REIMER J A, et al. Investigations of the state of Fe in H-ZSM-5[J]. Journal of Catalysis, 1999, 186(2): 242-253.
|
[28] |
MARSCHMEYER S, PAPP H. Surface analysis of a hydrothermally treated H-ZSM-5 zeolite[J]. Surface and Interface Analysis, 1997, 25(9): 660-666.
|
[29] |
POST J G, VAN HOOF J H C. Acidity and activity of H-ZSM-5 measured with NH3-t.p.d. and n-hexane cracking[J]. Zeolites, 1984, 4(1): 9-14.
|
[30] |
TAJBAKHSH M, ALINEZHAD H, NASROLLAHZADEH M, et al. Preparation, characterization and application of nanosized CuO/HZSM-5 as an efficient and heterogeneous catalyst for the N-formylation of amines at room temperature[J]. Journal of Colloid and Interface Science, 2016, 471(1): 37-47.
|