CIESC Journal ›› 2017, Vol. 68 ›› Issue (7): 2755-2762.DOI: 10.11949/j.issn.0438-1157.20161656
Previous Articles Next Articles
LIANG Wenjun, GUO Shuqing, WU Hongmei, LI Jian, HE Hong
Received:
2016-11-23
Revised:
2017-02-23
Online:
2017-07-05
Published:
2017-07-05
Contact:
10.11949/j.issn.0438-1157.20161656
Supported by:
supported by the National Natural Science Foundation of China(21307003) and Beijing Natural Science Foundation(8162009).
梁文俊, 郭书清, 武红梅, 李坚, 何洪
通讯作者:
郭书清
基金资助:
国家自然科学基金项目(21307003);北京市自然科学基金项目(8162009)。
CLC Number:
LIANG Wenjun, GUO Shuqing, WU Hongmei, LI Jian, HE Hong. Removal of toluene using non-thermal plasma coupled with Mn-Ce/La/γ-Al2O3 catalysts[J]. CIESC Journal, 2017, 68(7): 2755-2762.
梁文俊, 郭书清, 武红梅, 李坚, 何洪. 非热等离子体协同Mn-Ce/La/γ-Al2O3催化剂去除甲苯[J]. 化工学报, 2017, 68(7): 2755-2762.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20161656
[1] | 王爱华, 樊星, 梁文俊, 等. 低温等离子体协同锰银催化剂降解甲苯[J]. 工业催化, 2015, (1): 63-68.WANG A H, FAN X, LIANG W J, et al. Removal of toluene by non-thermal plasma coupled with Mn-Ag catalyst[J]. Industrial Catalysis, 2015, (1): 63-68. |
[2] | 黄炯. 介质阻挡放电-催化降解甲苯的产物分布及机理研究[D]. 广州: 华南理工大学, 2010.HUANG J. Research on products distribution and mechanism for toluene removal by dielectric barrier discharge combined with catalysis[D]. Guangzhou: South China University of Technology, 2010. |
[3] | 施志勇. 脉冲放电等离子体协同复合型催化剂去除甲醛的研究[D]. 赣州: 江西理工大学, 2015.SHI Z Y. The research of pulse discharge plasma combined with compound catalysts decomposition of formaldehyde[D]. Ganzhou: Jiangxi University of Science and Technology, 2015. |
[4] | 李静, 韩世同, 白书培, 等. 低温等离子体协同催化处理VOC技术中填充材料的研究进展[J]. 化工科技, 2006, (5): 33-39.LI J, HAN S T, BAI S P, et al.Recent progress of catalysts filled in the non-thermal plasma-catalyst hybrid system used for removing benzene[J]. Science & Technology In Chemical Industry, 2006, (5): 33-39. |
[5] | AN H T Q, HUU T P, LE VAN T, et al. Application of atmosphericnon thermal plasma-catalysis hybrid system for air pollution control: toluene removal[J]. Catalysis Today, 2011, 176(1): 474-477. |
[6] | ZHAO D Z, LI X S, SHI C, et al. Low-concentration formaldehyde removal from air using a cycled storage-discharge (CSD) plasma catalytic process[J]. Chemical Engineering Science, 2011, 66(17): 3922-3929. |
[7] | 曲险峰, 曲峻峰, 李海鹏, 等. 等离子体-催化协同处理挥发性有机物的催化剂研究进展[J]. 环境污染与防治, 2012, (11): 74-78, 85.QU X F, QU J F, LI H P, et al. Advance in the catalysts used in catalysis-assisted plasma method for VOCs removal[J]. Environmental Pollution and Prevention, 2012, (11): 74-78, 85. |
[8] | 李国平, 胡志军, 李建军, 等. 低温等离子体-催化协同净化有机废气研究进展[J]. 环境工程, 2013, (3): 71-75.LI G P, HU Z J, LI J J, et al. Adwances in catalysis-assisted non-thermal plasma reactor for purification of organic waste gas[J]. Environmental Engineering, 2013, (3): 71-75. |
[9] | 梁文俊, 王爱华, 樊星, 等. 低温等离子体协同钒钛催化剂降解甲苯试验[J]. 北京工业大学学报, 2015, 41(4): 628-635.LIANG W J, WANG A H, FAN X, et al. Removal of toluene by non-thermal plasma coupled with V-Ti catalysis[J]. Journal of Beijing University of Technology, 2015, 41(4): 628-635. |
[10] | 赵坤, 党小庆, 朱海瀛, 等. 负载型催化剂联合低温等离子体去除甲苯[J]. 环境工程学报, 2016, (7): 3756-3762.ZHAO K, DANG X Q, ZHU H Y, et al. Removal of toluene using of non-thermal plasma combined with supported catalysts[J]. Chinese Journal of Environmental Engineering, 2016, (7): 3756-3762. |
[11] | 赵业红. 直流电晕低温等离子体协同催化降解低浓度挥发性有机废气的研究[D]. 杭州: 浙江大学, 2016.ZHAO Y H. Experimental study on DC corona discharge non-thermal plasma coupled with catalysis for low-concentration volatile organic compounds removal[D]. Hangzhou: Zhejiang University, 2016. |
[12] | OGATA A, SHINTANI N, MIZUNO K, et al. Decomposition of benzene using a non-thermal plasma reactor packed with ferroelectric pellets[J]. IEEE Transaction on Industry Applications, 1999, 35(3): 753-759. |
[13] | SUN R B, XI Z G, CHAO F H, et al. Decomposition of low-concentration gas-phase toluene using plasma-driven photocatalyst reactor[J]. Atmospheric Environment, 2007, 41(32): 6853-6859. |
[14] | KIM H H, OGATA A, FUTAMURA S. Oxygen partial pressure-dependent behavior of various for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma[J]. Applied Catalysis B: Environmental, 2008, 79(4): 356-367. |
[15] | DUME J V, DEWULF J, LEYS C, et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review[J]. Applied Catalysis B: Environmental, 2008, 78(3/4): 324-333. |
[16] | 范红玉, 李小松, 刘艳霞, 等. 循环的存储-放电等离子体催化新过程脱除室内空气中甲苯[J]. 化工学报, 2011, 62(7): 1922-1926.FAN H Y, LI X S, LIU Y X, et al. Cycled storage-discharge plasma catalytic process for toluene removal from indoor air[J]. CIESC Journal, 2011, 62(7): 1922-1926. |
[17] | 向东, 赵国涛, 叶代启. 等离子体协同Mn/SBA-15催化氧化正己醛影响因素研究[J]. 中国科技论文在线, 2010, (5): 355-359.XIANG D, ZHAO G T, YE D Q. Study on factors influencing hexanal oxidation by plasma-assisted[J]. Science Paper Online, 2010, (5): 355-359. |
[18] | 董冰岩, 施志勇, 何俊文, 等. 脉冲放电等离子体协同Mn/TiO2-分子筛、Fe/TiO2-分子筛、Cu/TiO2-分子筛催化剂降解甲醛[J]. 化工进展, 2015, (9): 3337-3344.DONG B Y, SHI Z Y, HE J W, et al. Research of pulse discharge plasma combined with Mn/TiO2-molecular, Fe/TiO2-molecular, Cu/TiO2-molecular sieve catalysts decomposition of formaldehyde [J]. Chemical Industry and Engineering Progress, 2015, (9): 3337-3344. |
[19] | AMIN A, HAMID R B, NASER S M, et al. Comparison of dry reforming of methane in low temperature hybrid plasma-catalytic corona with thermal catalytic reactor over Ni /γ-Al2O3[J]. Journal of Natural Gas Chemistry, 2012, 21: 466-475. |
[20] | FUTAMURA S, EINAGA H, KABASHIMA H, et al.Synergistic effect of silent discharge plasma and catalysts on benzene decomposition[J]. Catalysis Today, 2004, 89: 89-95. |
[21] | 吴军良, 夏启斌, 刘治猛, 等. Mn、Fe和Cu氧化物在低温等离子体催化氧化甲苯体系中的活性比较[J]. 功能材料, 2012, (10): 1332-1335+1340.WU J L, XIA Q B, LIU Z M, et al. Removal of toluene by Mn, Fe and Cu oxides catalyst combined with non-thermal plasma[J]. Functional Materials, 2012, (10): 1332-1335+1340. |
[22] | WANG X, KANG Q, LI D. Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts[J]. Catalysis Communication, 2008, 9(13): 2158-2162. |
[23] | SHEN Q, LU G, DU C, et al. Role and reduction of NOx in the catalytic combustion of soot over iron-ceria mixed oxide catalyst[J]. Chemical Engineering, 2013, 218: 164-172. |
[24] | 樊国栋, 王丽娜. 热处理温度对Ce掺杂TiO2光催化剂结构与性能的影响[J]. 陕西科技大学学报(自然科学版), 2015, (5): 46-49.FAN G D, WANG L N. Annealing temperature on the influence of the structure and photocatalytic performance of Ce doped TiO2[J]. Journal of Shaanxi University of Science & Technology(JCR Science Edition), 2015, (5): 46-49. |
[25] | 李东艳, 刘海弟, 陈运法. 氧化锰八面体分子筛的合成及其对苯催化氧化性能[J]. 环境科学, 2011, (12): 3657-3661.LI D Y, LIU H D, CHEN Y F. Synthesis of manganese oxide octahedral molecular sieve and their application in catalytic oxidation of benzene[J]. Environmental Science, 2011, (12): 3657-3661. |
[26] | 吴军良. Mn/Ni/Cr基催化剂活性对低温等离子体催化氧化甲苯性能的影响[D]. 广州: 华南理工大学, 2014. WU J L. Effect of activities of manganese, nickel and chromium-based catalysts on the catalytic performance of non-thermal plasma catalysis system for toluene oxidation[D]. Guangzhou: South China University of Technology, 2014. |
[27] | 朱海瀛. 催化剂成分对低温等离子体降解吸附态甲苯的影响[D]. 西安: 西安建筑科技大学, 2015.ZHU H Y. Influence of catalyst composition on decomposition of adsorbed toluene with non-thermal plasma[D]. Xi'an: Xi'an University of Architecture and Technology, 2015. |
[28] | 林俊敏, 付名利, 朱文波, 等. 氧化碳烟的MnOx(0.4)-CeO2催化剂表面活性物种研究[J]. 分子催化, 2014, (2): 165-173.LIN J M, FU M L, ZHU W B, et al. An investigation of surface reactive species on MnOx(0.4)-CeO2 catalyst towards soot oxidation[J]. Journal of Molecular Catalysts, 2014, (2): 165-173 |
[29] | 林明桂, 杨成, 吴贵升, 等. 锰和镧改性Cu/ZrO2合成甲醇催化剂的结构及催化性能[J]. 催化学报, 2004, (7): 591-595.LIN M G, YANG C, WU G S, et al. Structure and catalytic performance of Mn- and La-modified Cu/ZrO2 catalysts for methanol synthesis[J]. Chinese Journal of Catalysis, 2004, (7): 591-595. |
[30] | 王芳芳, 郝露, 徐青山, 等. 镧系元素改性TiO2催化剂的研究进展[J]. 化工新型材料, 2015, 43: 21-23. WANG F F, HAO L, XU Q S, et al. Progress on lanthanide-doped TiO2 photocatalyst[J]. New Chemical Materials, 2015, 43: 21-23. |
[31] | LIANG W J, WANG A H, MA L, et al. Combination of spontaneous polarization plasma and photocatalyst for toluene oxidation[J]. Journal of Electrostatics, 2015, 75: 27-34. |
[32] | DURME J V, DEWULF J, SYSMANS W, et al. Abatement and degradation pathways of toluene in indoor air by positive corona discharge[J]. Chemopsphere, 2007, 68: 1821-1829. |
[33] | ALICE M H, DAVID J G, CHRISTOPHER J, et al. The role of ozone in the plasma-catalytic destruction of environmental pollutants[J]. Applied Catalysis B: Environment, 2009, 90: 157-161. |
[34] | 黄炯, 叶代启, 杨佘维. 介质阻挡放电-催化降解甲苯的研究[J]. 华南师范大学学报(自然科学版), 2016, (3): 102-108.HUANG J, YE D Q, YANG S W. Research on dielectric barrier discharge combined with catalyst for toluene removal[J]. Journal of South China Normal University (Natural Science Edition), 2016, (3): 102-108. |
[35] | 王沛涛, 何梦林, 鲁美娟, 等. 吸附存储-间歇放电法氧化甲苯的反应过程研究[J]. 中国环境科学, 2014, (12): 3047-3055.WANG P T, HE M L, LU M J, et al. Reaction process of toluene oxidation by adsorptive storage-intermittent discharge method[J]. China Environment Science, 2014, (12): 3047-3055. |
[1] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[2] | Shuyan WANG, Ruiyang ZHANG, Run LIU, Kai LIU, Ying ZHOU. Interfacial structure regulation of Mn(BO2)2/BNO to enhance catalytic ozone decomposition performance [J]. CIESC Journal, 2022, 73(7): 3193-3201. |
[3] | Yiwei ZHANG, Hairong TANG, Yong HE, Yanqun ZHU, Zhihua WANG. Experimental study of nitrogen balance in the process of flue gas denitration by ozone low-temperature oxidation [J]. CIESC Journal, 2022, 73(4): 1732-1742. |
[4] | Xiujuan SHI, Wenjun LIANG, Guobin YIN, Jinzhu WANG. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst [J]. CIESC Journal, 2022, 73(10): 4472-4483. |
[5] | Qianhao WANG, Lu ZHAO, Fulin SUN, Kegong FANG. Production of syngas derived from H2S-CO2via synergy of ZSM-5 catalyst and non-thermal plasma [J]. CIESC Journal, 2022, 73(1): 255-265. |
[6] | Zeyan LI, Xing FAN, Jian LI. Non-thermal plasma enhanced hydrolysis of urea decomposition by-products over TiO2 [J]. CIESC Journal, 2021, 72(9): 4698-4707. |
[7] | Liting HUANG, Xushen HAN, Yan JIN, Qiang MA, Jianguo YU. Isolation, identification and application of highly efficient halotolerant strains for coal chemical reverse osmosis concentrate treatment [J]. CIESC Journal, 2021, 72(9): 4881-4891. |
[8] | YE Kai, LIU Xianghua, JIANG Yue, YU Ying, ZHAO Yafei, ZHUANG Ye, ZHENG Jinbao, CHEN Binghui. Combing low-temperature plasma with CeO2/13X for toluene degradation [J]. CIESC Journal, 2021, 72(7): 3706-3715. |
[9] | YE Zhiping, ZHOU Danfei, LIU Zifeng, ZHOU Qingqing, WANG Jiade. Electro-oxidation information of p-toluene sulfonic acid on Ti/PbO2 electrode [J]. CIESC Journal, 2021, 72(5): 2810-2816. |
[10] | Wenqiang GAO, Weizhou JIAO, Youzhi LIU. Oxidation of toluene to benzoic acid by O3/H2O2 process enhanced usinghigh-gravity technology [J]. CIESC Journal, 2020, 71(3): 1045-1052. |
[11] | Baowei WANG, Huijuan SU, Shumei YAO. Preparation of O3 by O2 DBD microplasma [J]. CIESC Journal, 2020, 71(2): 746-754. |
[12] | Jun an GAO, Wei WANG, Jie ZHANG, Zhigang LEI, Dongjun SHI, Lingduo QU. Study on synthesis and adsorption performance of hydrophobic ZSM-5 zeolites for removal of toluene in high-humidity exhaust gas [J]. CIESC Journal, 2020, 71(1): 337-343. |
[13] | Chenchen ZHAO, Qinglan HAO, Ningna YAN, Deyu YANG, Yafei HUANG, Baojuan DOU. Study on lean-combustion limit of toluene self-sustained combustion on Cu-Ce-Zr based catalysts [J]. CIESC Journal, 2019, 70(8): 3050-3057. |
[14] | Jiangyuan QU, Xiaolong LIU, Yanjun GUAN, Nana QI, Yang TENG, Wenqing XU, Tingyu ZHU, Kai ZHANG. CFD simulation of low-temperature NO oxidation using ozone in sintering flue gas [J]. CIESC Journal, 2019, 70(11): 4387-4396. |
[15] | Yong CAI, Chuang LIANG, Yong LUO, Guangwen CHU, Mengjun SU, Baochang SUN, Jianfeng CHEN. [J]. CIESC Journal, 2019, 70(10): 3847-3858. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||