[1] |
韩凯悦. 聚苯乙烯催化氢化制备聚环己烷基乙烯新型高分子材料的基础研究[D]. 上海: 华东理工大学, 2014.HAN K Y. Basis study of the hydrogenation of polystyrene to produce novel polymer poly(vinylcyclohexane)[D]. Shanghai: East China University of Science and Technology, 2014.
|
[2] |
HAN K Y, ZUO H R, CAO G P, et al. High performance of palladium nanoparticles supported on carbon nanotubes for the hydrogenation of commercial polystyrene[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 17750-17759.
|
[3] |
BATES F S, FREDRICKSON G H, HUCULD, et al. PCHE-based pentablock copolymers evolution of a new plastic[J]. American Institute of Chemical Engineers, 2001, 47(4): 762-765.
|
[4] |
UTPAL K S, VANNICE M A. Liquid-phase hydrogenation of citral over Pt/SiO2 catalysts: temperature effects on activity and selectivity[J]. Journal of Catalysis, 2000, 191(1): 165-180.
|
[5] |
CHANG J R, HUANG S M. Pd/Al2O3 catalysts for selective hydrogenation of polystyrene-block-polybutadiene-block-polystyrene thermoplastic elastomers[J]. Industrial & Engineering Chemistry Research, 1998, 37(4): 1220-1227.
|
[6] |
ALMUSAITEER K A. Effect of supports on the catalytic hydrogenation of polystyrene[J]. Topics in Catalysis, 2012, 55(7): 498-504.
|
[7] |
ROSEDALE J H, BATES F S. Heterogeneous catalytic hydrogenation of poly(vinylethylene)[J]. Journal of the American Chemical Society, 1988, 110(11): 3542-3545.
|
[8] |
XU D, CARBONELL R G, KISEROW D J, et al. Kinetic and transport processes in the heterogeneous catalytic hydrogenation of polystyrene[J]. Industrial & Engineering Chemistry Research, 2003, 42(15): 3509-3515.
|
[9] |
GEHLSEN M D, WEIMANN P A, BATES F S, et al. Synthesis and characterization of poly(vinylcyclohexane) derivatives[J]. Journal of Polymer Science Part B: Polymer Physics, 1995, 33(10): 1527-1536.
|
[10] |
HAN K Y, MENG C, CAO G P, et al. Hydrogenation of commercial polystyrene over Pd/BaSO4 catalysts: effect of carrier structure[J]. Transactions of Tianjin University, 2014, 20(4): 282-291.
|
[11] |
IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.
|
[12] |
TROJANOWICZ M. Analytical applications of carbon nanotubes: a review[J]. TrAC Trends in Analytical Chemistry, 2006, 25(5): 480-489.
|
[13] |
LU H, XU B, WANG X, et al. The influence of Pd particles distribution position on Pd/CNTs catalyst for acetylene selective hydrogenation[J]. Catalysis Letters, 2014, 144(12): 2198-2203.
|
[14] |
SUN Y, LI C, ZHANG A. Preparation of Ni/CNTs catalyst with high reducibility and their superior catalytic performance in benzene hydrogenation[J]. Applied Catalysis A: General, 2016, 522(25): 180-187.
|
[15] |
GAO Z, ZHANG X, ZHANG K, et al. Growth of vertically aligned carbon nanotube arrays on Al substrates through controlled diffusion of catalyst[J]. The Journal of Physical Chemistry C, 2015, 119(27): 15636-15642.
|
[16] |
GONG B, WANG R, LIN B, et al. Preparation of carbon nanotubes (CNTs)-cordierite monoliths by catalytic chemical vapor deposition as catalyst supports for ammonia synthesis[J]. Catalysis Letters, 2007, 122(3): 287-294.
|
[17] |
GARCIA-BORDEJE E, KVANDE I, CHEN D, et al. Synthesis of composite materials of carbon nanofibres and ceramic monoliths with uniform and tuneable nanofibre layer thickness[J]. Carbon, 2007, 45(9): 1828-1838.
|
[18] |
COSTA D A S, OLIVEIRA A A S, SOUZA P P, et al. The combined effect between Co and carbon nanostructures grown on cordierite monoliths for the removal of organic contaminants from the liquid phase[J]. New Journal of Chemistry, 2015, 39: 1438-1444.
|
[19] |
MAZUMDER S, SARKAR N, PARK J G, et al. Carbon nanotubes-porous ceramic composite by in situ CCVD growth of CNTs[J]. Materials Chemistry and Physics, 2016, 171(1): 247-251.
|
[20] |
YU X, LIN B, GONG B, et al. Effect of nitric acid treatment on carbon nanotubes (CNTs)-cordierite monoliths supported ruthenium catalysts for ammonia synthesis[J]. Catalysis Letters, 2008, 124(3): 168-173.
|
[21] |
BUENO-LOPEZ A D, LOZANO-CASTELLO D, SUCH-BASANEZ I, et al. Preparation of beta-coated cordierite honeycomb monoliths by in situ synthesis[J]. Applied Catalysis B: Environmental, 2005, 58(1/2): 1-7.
|
[22] |
JARRAH N, OMMEN J G, LEFFERTS L. Development of monolith with a carbon-nanofiber-washcoat as a structured catalyst support in liquid phase[J]. Catalysis Today, 2003, 79: 29-33.
|
[23] |
JARRAH N A, OMMEN J G, LEFFERTS L. Growing a carbon nano-fiber layer on a monolith support: effect of nickel loading and growth conditions[J]. Journal of Materials Chemistry, 2004, 14(10): 1590-1597.
|
[24] |
WANG J, WANG R, YU X, et al. Preparation and characterization of carbon nanotubes-coated cordierite for catalyst supports[J]. Journal of Natural Gas Chemistry, 2006, 15(3): 211-216.
|
[25] |
SOGHRATI E, KAZEMEINI M, RASHIDI A M, et al. Preparation and characterization of Co-Mo catalyst supported on CNT coated cordierite monoliths utilized for naphta HDS process[J]. Procedia Engineering, 2012, 42: 1484-1492.
|
[26] |
GONZALEZ-VELASCO J R, GUTIERREZ-ORTIZ M A, FERRET R, et al. Synthesis of cordierite monolithic honeycomb by solid state reaction of precursor oxides[J]. Journal of Materials Science, 1999, 34(9): 1999-2002.
|
[27] |
SELVARAJ U, KOMARNENI S, ROY R. Synthesis of glass-like cordierite from metal alkoxides and characterization by 27Al and 29Si MASNMR[J]. Journal of the American Ceramic Society, 1990, 73(12): 3663-3669.
|
[28] |
谢志鹏. 结构陶瓷[M]. 北京: 清华大学出版社, 2011: 499.XIE Z P. Structural Ceramics[M]. Beijing: Tsinghua University Press, 2011: 499.
|
[29] |
CORMA A, GARCIA H, LEYVA A. Catalytic activity of palladium supported on single wall carbon nanotubes compared to palladium supported on activated carbon[J]. Journal of Molecular Catalysis A: Chemical, 2005, 230(1): 97-105.
|
[30] |
ZHANG M, YAN Z, XIE J. Core/shell Ni@Pd nanoparticles supported on MWCNTs at improved electrocatalytic performance for alcohol oxidation in alkaline media[J]. Electrochimica Acta, 2012, 77(30): 237-243.
|
[31] |
YAN Z, ZHANG M, XIE J, et al. Vanadium carbide and graphite promoted Pd electrocatalyst for ethanol oxidation in alkaline media[J]. Journal of Power Sources, 2013, 243(1): 336-342.
|