CIESC Journal ›› 2018, Vol. 69 ›› Issue (1): 57-68.DOI: 10.11949/j.issn.0438-1157.20171012
Previous Articles Next Articles
CHEN Bin, ZHOU Zhifu, XIN Hui
Received:
2017-07-31
Revised:
2017-10-10
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171012
Supported by:
supported by the National Natural Science Foundation of China (51336006).
陈斌, 周致富, 辛慧
通讯作者:
陈斌
基金资助:
国家自然科学基金重点项目(51336006)。
CLC Number:
CHEN Bin, ZHOU Zhifu, XIN Hui. Cryogen transient flashing spray cooling: state of art[J]. CIESC Journal, 2018, 69(1): 57-68.
陈斌, 周致富, 辛慧. 制冷剂瞬态闪蒸喷雾冷却研究进展[J]. 化工学报, 2018, 69(1): 57-68.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20171012
[1] | POLANCO G, HOLDO A E, MUNDAY G. General review of flashing jet studies[J]. J. Hazard Mater., 2010, 173(1/2/3):2-18. |
[2] | SHER E, BAR-KOHANY T, RASHKOVAN A. Flash-boiling atomization[J]. Progress in Energy and Combustion Science, 2008, 34(4):417-439. |
[3] | CHENG W L, ZHANG W W, CHEN H, et al. Spray cooling and flash evaporation cooling:the current development and application[J]. Renewable and Sustainable Energy Reviews, 2016, 55:614-628. |
[4] | HSIEH S S, FAN T C, TSAI H H. Spray cooling characteristics of water and R-134a(Ⅰ):Nucleate boiling[J]. International Journal of Heat and Mass Transfer, 2004, 47(26):5703-5712. |
[5] | HSIEH S S, FAN T C, TSAI H H. Spray cooling characteristics of water and R-134a(Ⅱ):Transient cooling[J]. International Journal of Heat and Mass Transfer, 2004, 47(26):5713-5724. |
[6] | HOU Y, LIU J, SU X, et al. Experimental study on the characteristics of a closed loop R134-a spray cooling[J]. Experimental Thermal and Fluid Science, 2015, 61:194-200. |
[7] | WANG C, XU R, SONG Y, et al. Study on water droplet flash evaporation in vacuum spray cooling[J]. International Journal of Heat and Mass Transfer, 2017, 112:279-288. |
[8] | SHEN S, CHE Z, WANG T, et al. Numerical study on flash boiling spray of multi-hole injector[J]. SAE International Journal of Fuels and Lubricants, 2017, 10(2):369-379. |
[9] | GUO H, MA X, LI Y, et al. Effect of flash boiling on microscopic and macroscopic spray characteristics in optical GDI engine[J]. Fuel, 2017, 190:79-89. |
[10] | GUO H, DING H, LI Y, et al. Comparison of spray collapses at elevated ambient pressure and flash boiling conditions using multi-hole gasoline direct injector[J]. Fuel, 2017, 199:125-134. |
[11] | MUTAIR S, IKEGAMI Y. Experimental investigation on the characteristics of flash evaporation from superheated water jets for desalination[J]. Desalination, 2010, 251(1/2/3):103-111. |
[12] | MUTAIR S, IKEGAMI Y. Experimental study on flash evaporation from superheated water jets:influencing factors and formulation of correlation[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24):5643-5651. |
[13] | ZHOU Z F, LI W Y, CHEN B, et al. A 3rd-order polynomial temperature profile model for the heating and evaporation of moving droplets[J]. Applied Thermal Engineering, 2017, 110:162-170. |
[14] | ZHOU Z F, WANG G X, CHEN B, et al. Evaluation of evaporation models for single moving droplet with a high evaporation rate[J]. Powder Technology, 2013, 240:95-102. |
[15] | ANDERSON R R, PARRISH J A. Selective photothermolysis:precise microsurgery by selective absorption of pulsed radiation[J]. Science, 1983, 220(4596):524-527. |
[16] | LI D, HE Y L, WANG G X. Thermal Modelling for Laser Treatment of Port Wine Stains[M]//Developments in Heat Transfer. In Tech, 2011:537-556. |
[17] | 周致富, 辛慧, 陈斌, 等. 激光手术喷雾冷却中单个液滴蒸发特性研究[J]. 中国激光, 2008, 35(6):952-956. ZHOU Z F, XIN H, CHEN B, el al. Evaporation characteristics of a single droplet in laser treatment of port wine stain in conjunction with cryogen spray cooling[J]. Chinese Journal of Lasers, 2008, 35(6):952-956. |
[18] | NELSON J S, MILNER T E, ANVARI B, et al. Dynamic epidermal cooling during pulsed laser treatment of port-wine stain. A new methodology with preliminary clinical evaluation[J]. Arch. Dermatol., 1995, 131(6):695-700. |
[19] | NELSON J S, MILNER T E, ANVARI B, et al. Dynamic epidermal cooling in conjunction with laser-induced photothermolysis of port wine stain blood vessels[J]. Lasers Surg. Med., 1996, 19(2):224-229. |
[20] | ZHOU Z F, CHEN B, WANG Y, et al. An experimental study on pulsed spray cooling with refrigerant R-404a in laser surgery[J]. Applied Thermal Engineering, 2012, 39(1):29-36. |
[21] | LI D, CHEN B, WU W J, et al. Numerical analysis of cold injury of skin in cryogen spray cooling for dermatologic laser surgery[C]//ASME International Mechanical Engineering Congress and Exposition Proceedings. Seattle, 2014:673-681. |
[22] | LIANG G, MUDAWAR I. Review of spray cooling(Ⅰ):Single-phase and nucleate boiling regimes, and critical heat flux[J]. International Journal of Heat and Mass Transfer, 2017, 115:1174-1205. |
[23] | KIM J. Spray cooling heat transfer:the state of the art[J]. International Journal of Heat and Fluid Flow, 2007, 28(4):753-767. |
[24] | BROWN R, YORK J L. Sprays formed by flashing liquid jets[J]. AIChE Journal, 1962, 8(2):149-153. |
[25] | REITZ R D. A photographic study of flash-boiling atomization[J]. Aerosol Science and Technology, 1990, 12(3):561-569. |
[26] | OZA R D. On the mechanism of flashing injection of initially subcooled fuels[J]. Journal of Fluids Engineering-Transactions of the ASME, 1984, 106(1):105-109. |
[27] | PETER E M, TAKIMOTO A, HAYASHI Y. Flashing and shattering phenomena of superheated liquid jets[J]. JSME International Journal, Series B:Fluids and Thermal Engineering, 1994, 37(2):313-321. |
[28] | PARK B S, LEE S Y. An experimental investigation of the flash atomization mechanism[J]. Atomization and Sprays, 1994, 4(2):159-179. |
[29] | 王新升, 陈斌. R134a闪蒸喷雾过程中喷管内流动形态对喷雾特性的影响[J]. 化工学报, 2016, 67(12):4929-4935. WANG X S, CHEN B. Effect of flow pattern inside nozzle on spray characteristics of R134a flashing spray[J], CIESC Journal, 2016, 67(12):4929-4935. |
[30] | WANG X S, CHEN B, WANG R, et al. Experimental study on the relation between internal flow and flashing spray characteristics of R134a using straight tube nozzles[J]. International Journal of Heat and Mass Transfer, 2017, 115:524-536. |
[31] | 周致富, 白飞龙, 王锐, 等. 带膨胀腔喷嘴制冷剂R134a闪蒸喷雾可视化研究[J]. 工程热物理学报, 2015, 36(12):2646-2650. ZHOU Z F, BAI F L, WANG R, Visualization of the flashing spray generating by the expandion-chanmber nozzle using R134a[J]. Journal of Engineering Thermophysisc, 2015, 36(12):2646-2650. |
[32] | 周致富, 陈斌, 白飞龙, 等. 新型喷嘴R404a闪蒸瞬态喷雾冷却传热特性[J]. 化工学报, 2015, 66(S1):100-105. ZHOU Z F, CHEN B, BAI F L, el al. Heat transfer dynamics of R404a flashing pulsed spray cooling using expansion-chamber nozzle[J]. CIESC Journal, 2015, 66(S1):100-105. |
[33] | PIKKULA B M, TORRES J H, TUNNELL J W, et al. Cryogen spray cooling:effects of droplet size and spray density on heat removal[J]. Lasers Surg. Med., 2001, 28(2):103-112. |
[34] | PIKKULA B M, TUNNELL J W, CHANG D W, et al. Effects of droplet velocity, diameter, and film height on heat removal during cryogen spray cooling[J]. Ann. Biomed. Eng., 2004, 32(8):1131-1140. |
[35] | KARAPETIAN E, AGUILAR G, KIMEL S, et al. Effects of mass flow rate and droplet velocity on surface heat flux during cryogen spray cooling[J]. Phys. Med. Biol., 2003, 48(1):N1-6. |
[36] | AGUILAR G, MAJARON B, POPE K, et al. Influence of nozzle-to-skin distance in cryogen spray cooling for dermatologic laser surgery[J]. Lasers Surg. Med., 2001, 28(2):113-120. |
[37] | AGUILAR G, MAJARON B, VERKRUYSSE W, et al. Theoretical and experimental analysis of droplet diameter, temperature, and evaporation rate evolution in cryogenic sprays[J]. International Journal of Heat and Mass Transfer, 2001, 44(17):3201-3211. |
[38] | AGUILAR G, MAJARON B, KARAPETIAN E, et al. Experimental study of cryogen spray properties for application in dermatologic laser surgery[J]. IEEE Trans. Biomed. Eng., 2003, 50(7):863-869. |
[39] | VU H, GARC A-VALLADARES O, AGUILAR G. Vapor/liquid phase interaction in flare flashing sprays used in dermatologic cooling[J]. International Journal of Heat and Mass Transfer, 2008, 51(23/24):5721-5731. |
[40] | ZHOU Z F, WU W T, CHEN B, et al. An experimental study on the spray and thermal characteristics of R134a two-phase flashing spray[J]. International Journal of Heat and Mass Transfer, 2012, 55(15/16):4460-4468. |
[41] | YILDIZ D, RAMBAUD P, BEECK J V, et al. Evolution of the spray characteristics in superheated liquid jet atomization in function of initial flow conditions[C]//10th International Conference on Liquid Atomization and Spray Systems. Kyoto, 2006. |
[42] | YILDIZ D, VAN BEECK J P A J, RIETHMULLER M L. Feasibility exploration of laser-based techniques for characterization of a flashing jet[J]. Particle and Particle Systems Characterization, 2004, 21(5):390-402. |
[43] | YILDIZ D, RAMBAUD P, BEECK J V. Break-up, droplet size and velocity characterizations of a two-phase flashing R134a jet[C]//5th International Conference on Multiphase Flow. Yokohama, 2004. |
[44] | YILDIZ D, RAMBAUD P, VAN BEECK J, et al. Thermal characterization of a R134A two-phase flashing jet[C]//9th International Conference on Liquid Atomization and Spray Systems ICLASS. Sorreno, Italy, 2003. |
[45] | ZHOU Z F, WU W T, WANG G X, et al. Thermal characteristics of flashing spray of volatile R134a cryogens[C]//ASME 2011 International Mechanical Engineering Congress and Exposition. Denver, 2011:649-656. |
[46] | AGUILAR G, WANG G X, NELSON J S. Effect of spurt duration on the heat transfer dynamics during cryogen spray cooling[J]. Phys. Med. Biol., 2003, 48(14):2169-2181. |
[47] | TORRES J H, TUNNELL J W, PIKKULA B M, et al. An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application[J]. Lasers Surg. Med., 2001, 28(5):477-486. |
[48] | TUNNELL J W, CHANG D W, JOHNSTON C, et al. Effects of cryogen spray cooling and high rdiant exposures on selective vascular injury during laser irradiation of human skin[J]. Arch. Dermatol., 2003, 139(1):743-750. |
[49] | TUNNELL J W, TORRES J H, ANVARI B. Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling[J]. Ann. Biomed. Eng., 2002, 30(1):19-33. |
[50] | MAJARON B, AGUILARA G, BASINGERA B, et al. Sequential cryogen spraying for heat flux control at the skin surface[C]//Proc. SPIE. San Jose, 2001, 4244(4):74-81. |
[51] | MAJARON B, SVAASAND L O, AGUILAR G, et al. Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment[J]. Phys. Med. Biol., 2002, 47(18):3275-3288. |
[52] | AGUILAR G, WANG G X, NELSON J S. Dynamic behavior of cryogen spray cooling:effects of spurt duration and spray distance[J]. Lasers Surg. Med., 2003, 32(2):152-159. |
[53] | TORRES J H, NELSON J S, TANENBAUM B S, et al. Estimation of internal skin temperatures in response to cryogen spray cooling:implications for laser therapy of port wine stains[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4):1058-1065. |
[54] | TUNNELL J W, CHANG D W, JOHNSTON C, et al. Effects of cryogen spray cooling and high radiant exposures on selective vascular injury during laser irradiation of human skin[J]. Arch. Dermatol., 2003, 139(6):743-750. |
[55] | TUNNELL J W, NELSON J S, TORRES J H, et al. Epidermal protection with cryogen spray cooling during high fluence pulsed dye laser irradiation:an ex vivo study[J]. Lasers in Surgery and Medicine, 2000, 27(10):373-383. |
[56] | PIKKULA B M, TUNNELL J W, ANVARI B. Methodology for characterizing heat removal mechanism in human skin during cryogen spray cooling[J]. Ann. Biomed. Eng., 2003, 31(5):493-504. |
[57] | AGUILAR G, VERKRUYSSE W, MAJARON B, et al. Measurement of heat flux and heat transfer coefficient during continuous cryogen spray cooling for laser dermatologic surgery[J]. IEEE Journal on Selected Topics in Quantum Electronics, 2001, 7(6):1013-1021. |
[58] | 周致富, 吴威涛, 王国祥, 等. 制冷剂闪蒸瞬态喷雾冷却表面温度的快速测量[J]. 化工学报, 2011, 62(11):2691-2695. ZHOU Z F, WU W T, WANG G X, et al. Thin-film thermocouples for rapid measurement of transient surface temperature in cryogen spray cooling[J]. CIESC Journal, 2011, 62(11):2691-2695. |
[59] | ZHOU Z F, XU T Y, CHEN B. Algorithms for the estimation of transient surface heat flux during ultra-fast surface cooling[J]. International Journal of Heat and Mass Transfer, 2016, 100:1-10. |
[60] | TIAN J M, CHEN B, ZHOU Z F. Methodology of surface heat flux estimation for 2D multi-layer mediums[J]. International Journal of Heat and Mass Transfer, 2017, 114:675-687. |
[61] | AGUILAR G, VU H, NELSON J S. Influence of angle between the nozzle and skin surface on the heat flux and overall heat extraction during cryogen spray cooling[J]. Phys. Med. Biol., 2004, 49(10):N147-N153. |
[62] | WANG G X, AGUILAR G, NELSON J S. Dynamic behavior of cryogen spray cooling:effect of spray distance[C]//ASME National Heat Transfer Conference. Las Vegas, 2003. |
[63] | JIA W, AGUILAR G, WANG G X, et al. Heat-transfer dynamics during cryogen spray cooling of substrate at different initial temperatures[J]. Phys. Med. Biol., 2004, 49(23):5295-5308. |
[64] | JIA W, AGUILAR G, VERKRUYSSE W, et al. Improvement of port wine stain laser therapy by skin preheating prior to cryogen spray cooling:a numerical simulation[J]. Lasers Surg. Med., 2006, 38(2):155-162. |
[65] | FRANCO W, LIU J, WANG G X, et al. Radial and temporal variations in surface heat transfer during cryogen spray cooling[J]. Phys. Med. Biol., 2005, 50(2):387-397. |
[66] | FRANCO W, WANG G X, NELSON J S, et al. Radial heat transfer dynamics during cryogen spray cooling[C]//ASME International Mechanical Engineering Congress and Exposition. Anaheim, 2004. |
[67] | FRANCO W, LIU J, ROMERO-MENDEZ R, et al. Extent of lateral epidermal protection afforded by a cryogen spray against laser irradiation[J]. Lasers Surg. Med., 2007, 39(5):414-421. |
[68] | WANG R, ZHOU Z F, CHEN B, et al. Surface heat transfer characteristics of R404A pulsed spray cooling with an expansion-chambered nozzle for laser dermatology[J]. International Journal of Refrigeration, 2015, 60:206-216. |
[69] | RAMIREZ-SAN-JUAN J C, CHOI B, FRANCO W, et al. Effect of ambient humidity on light transmittance through skin phantoms during cryogen spray cooling[J]. Physics in Medicine and Biology, 2006, 51(1):113-120. |
[70] | MAJARON B, KIMEL S, VERKRUYSSE W, et al. Cryogen spray cooling in laser dermatology:effects of ambient humidity and frost formation[J]. Lasers Surg. Med., 2001, 28(5):469-476. |
[71] | VU H, AGUILAR G, STUART NELSON J. Passive mass deposition control of cryogen sprays through the use of wire meshes[J]. Lasers Surg. Med., 2004, 34(4):329-334. |
[72] | BASINGER B, AGUILAR G, NELSON J S. Effect of skin indentation on heat transfer during cryogen spray cooling[J]. Lasers Surg. Med., 2004, 34(2):155-163. |
[73] | TUQAN A T, KELLY K M, AGUILAR G, et al. Evaluation of single versus multiple cryogen spray cooling spurts on in vitro model human skin[J]. Lasers Med. Sci., 2005, 20(2):80-86. |
[74] | KAO B, KELLY K M, AGUILAR G, et al. Evaluation of cryogen spray cooling exposure on in vitro model human skin[J]. Lasers Surg. Med., 2004, 34(2):146-154. |
[75] | TIAN J M, CHEN B, LI D, et al. Transient spray cooling:similarity of dynamic heat flux for different cryogens, nozzles and substrates[J]. International Journal of Heat & Mass Transfer, 2017, 108:561-571. |
[76] | CHEN J K, GHASRI P, AGUILAR G, et al. An overview of clinical and experimental treatment modalities for port wine stains[J]. J. Am. Acad. Dermatol., 2012, 67(2):289-304. |
[77] | AGUILAR G, CHOI B, BROEKGAARDEN M, et al. An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains[J]. Ann. Biomed. Eng., 2012, 40(2):486-506. |
[78] | DAI T, PIKKULA B M, TUNNELL J W, et al. Thermal response of human skin epidermis to 595-nm laser irradiation at high incident dosages and long pulse durations in conjunction with cryogen spray cooling:an ex-vivo study[J]. Lasers Surg. Med., 2003, 33(1):16-24. |
[79] | DAI T, YASEEN M A, DIAGARADJANE P, et al. Comparative study of cryogen spray cooling with R-134a and R-404a:implications for laser treatment of dark human skin[J]. J. Biomed. Opt., 2006, 11(4):041116. |
[80] | ZHOU Z F, CHEN B, WANG R, et al. Comparative investigation on the spray characteristics and heat transfer dynamics of pulsed spray cooling with volatile cryogens[J]. Experimental Thermal and Fluid Science, 2017, 82:189-197. |
[81] | LI D, CHEN B, WU W J, et al. Multi-scale modeling of tissue freezing during cryogen spray cooling with R134a, R407c and R404a[J]. Applied Thermal Engineering, 2014, 73(2):1489-1500. |
[82] | AGUILAR G, SVAASAND L O, NELSON J S. Effects of hypobaric pressure on human skin(Ⅰ):Feasibility study for port wine stain laser therapy[J]. Lasers Surg. Med., 2005, 36(2):124-129. |
[83] | AGUILAR G, FRANCO W, LIU J, et al. Effects of hypobaric pressure on human skin(Ⅱ):Implications for cryogen spray cooling[J]. Lasers Surg. Med., 2005, 36(2):130-135. |
[84] | FRANCO W, CHILDERS M, STUART NELSON J, et al. Laser surgery of port wine stains using local vaccum pressure(Ⅱ):Changes in calculated energy deposition[J]. Lasers Surg. Med., 2007, 39(2):118-127. |
[85] | ZHOU Z F, CHEN B, WANG R, et al. Coupling effect of hypobaric pressure and spray distance on heat transfer dynamics of R134a pulsed flashing spray cooling[J]. Experimental Thermal and Fluid Science, 2016, 70:96-104. |
[86] | ZHOU Z F, WANG R, CHEN B, et al. Heat transfer characteristics during pulsed spray cooling with R404A at different spray distances and back pressures[J]. Applied Thermal Engineering, 2016, 102:813-821.ARI B, et al. Dynamic epidermal cooling during pulsed laser treatment of port-wine stain. A new methodology with preliminary clinical evaluation[J]. Arch Dermatol, 1995, 131(6): 695-700. |
[19] | NELSON J S, MILNER T E, ANVARI B, et al. Dynamic epidermal cooling in conjunction with laser-induced photothermolysis of port wine stain blood vessels[J]. Lasers Surg Med, 1996, 19(2): 224-229. |
[20] | ZHOU Z F, CHEN B, WANG Y, et al. An experimental study on pulsed spray cooling with refrigerant R-404a in laser surgery[J]. Applied Thermal Engineering, 2012, 39(0): 29-36. |
[21] | LI D, CHEN B, WU W J, et al. Numerical Analysis of Cold Injury of Skin in Cryogen Spray Cooling for Laser Dermatologic Surgery[J]. Asme International Mechanical Engineering Congress and Exposition Proceedings, 2014, : 673-681. |
[22] | LIANG G, MUDAWAR I. Review of spray cooling-Part 1: Single-phase and nucleate boiling regimes, and critical heat flux[J]. International Journal of Heat and Mass Transfer, 2017, : 1-32. |
[23] | KIM J. Spray cooling heat transfer: the state of the art[J]. International Journal of Heat and Fluid Flow, 2007, 28(4): 753-767. |
[24] | BROWN R, YORK J L. Sprays formed by flashing liquid jets[J]. Aiche Journal, 1962, 8(2): 149-153. |
[25] | REITZ R D. A Photographic Study of Flash-Boiling Atomization[J]. Aerosol Science and Technology, 1990, 12(3): 561-569. |
[26] | OZA R D. On the mechanism of flashing injection of initially subcooled fuels[J]. Journal of fluids engineering-transactions of the ASME, 1984, 106(1): 105-109. |
[27] | PETER E M, TAKIMOTO A, HAYASHI Y. Flashing and shattering phenomena of superheated liquid jets[J]. JSME International Journal, Series B: Fluids and Thermal Engineering 1994, 37(2): 313-321. |
[28] | SUH P B, YONG L S. An experimental investigation of the flash atomization mechanism[J]. Atomization and Sprays, 1994, 4(2): 159-179. |
[29] | 王新升, 陈斌. R134a 闪蒸喷雾过程中喷管内流动形态对喷雾特性的影响[J]. 化工学报, 2016, 67(12): 4929-4935.WANG X S, CHEN B, Effect of flow pattern inside nozzle on spray characteristics of R134a flashing spray[J], CIESC Journal, 2016, 67(12): 4929-4935. |
[30] | WANG X S, CHEN B, WANG R, et al. Experimental study on the relation between internal flow and flashing spray characteristics of R134a using straight tube nozzles[J]. International Journal of Heat and Mass Transfer, 2017, 115: 524-536. |
[31] | 周致富, 白飞龙, 王锐, 等. 带膨胀腔喷嘴制冷剂R134a闪蒸喷雾可视化研究[J]. 工程热物理学报, 2015, V36(12): 2646-2650.ZHOU Z F, BAI F L, WANG R, Visualization of the flashing spray generating by the expandion-chanmber nozzle using R134a[J]. Journal of Engineering Thermophysisc, 2015, 36(12): 2646-2650. |
[32] | 周致富, 陈斌, 白飞龙, 等. 新型喷嘴R404a闪蒸瞬态喷雾冷却传热特性[J]. 化工学报, 2015, 66(s1): 100-105.ZHOU Z F, CHEN B, BAI F L, el al. Heat transfer dynamics of R404a flashing pulsed spray cooling using expansion-chamber nozzle[J]. CIESC Journal, 2015, 66(s1): 100-105. |
[33] | PIKKULA B M, TORRES J H, TUNNELL J W, et al. Cryogen spray cooling: Effects of droplet size and spray density on heat removal[J]. Lasers Surg Med, 2001, 28(2): 103-112. |
[34] | PIKKULA B M, TUNNELL J W, CHANG D W, et al. Effects of droplet velocity, diameter, and film height on heat removal during cryogen spray cooling[J]. Ann Biomed Eng, 2004, 32(8): 1131-1140. |
[35] | KARAPETIAN E, AGUILAR G, KIMEL S, et al. Effects of mass flow rate and droplet velocity on surface heat flux during cryogen spray cooling[J]. Phys Med Biol, 2003, 48(1): N1-6. |
[36] | AGUILAR G, MAJARON B, POPE K, et al. Influence of nozzle-to-skin distance in cryogen spray cooling for dermatologic laser surgery[J]. Lasers Surg Med, 2001, 28(2): 113-120. |
[37] | AGUILAR G, MAJARON B, VERKRUYSSE W, et al. Theoretical and experimental analysis of droplet diameter, temperature, and evaporation rate evolution in cryogenic sprays[J]. International Journal of Heat and Mass Transfer, 2001, 44(17): 3201-3211. |
[38] | AGUILAR G, MAJARON B, KARAPETIAN E, et al. Experimental study of cryogen spray properties for application in dermatologic laser surgery[J]. IEEE Trans Biomed Eng, 2003, 50(7): 863-869. |
[39] | VU H, GARC A-VALLADARES O, AGUILAR G. Vapor/liquid phase interaction in flare flashing sprays used in dermatologic cooling[J]. International Journal of Heat and Mass Transfer, 2008, 51(23-24): 5721-5731. |
[40] | ZHIFU Z, WEITAO W, BIN C, et al. An experimental study on the spray and thermal characteristics of R134a two-phase flashing spray[J]. International Journal of Heat and Mass Transfer, 2012, 55(15-16): 4460-4468. |
[41] | YILDIZ D, RAMBAUD P, BEECK J V, et al. Evolution of the spray characteristics in superheated liquid jet atomization in function of initial flow conditions[C]. 10th International Conference on Liquid Atomization and Spray Systems, 2006. |
[42] | YILDIZ D, VAN BEECK J P A J, RIETHMULLER M L. Feasibility Exploration of Laser-based Techniques for Characterization of a Flashing Jet[J]. Particle and Particle Systems Characterization, 2004, 21(5): 390-402. |
[43] | YILDIZ D, RAMBAUD P, BEECK J V. Break-up, Droplet Size and Velocity Characterizations of a Two-phase Flashing R134a Jet[C]. 5th International Conference on Multiphase Flow, 2004. |
[44] | YILDIZ D, RAMBAUD P, VAN BEECK J, et al. Thermal characterization of a R134A two-phase flashing jet[C]. 9th International Conference on Liquid Atomization and Spray Systems ICLASS, 2003, Sorreno, Italy, 2003. |
[45] | ZHOU Z F, WU W T, WANG G X, et al. Thermal characteristics of flashing spray of volatile R134a cryogens[C]. ASME 2011 International Mechanical Engineering Congress and Exposition, 2011 : 649-656. |
[46] | AGUILAR G, WANG G X, NELSON J S. Effect of spurt duration on the heat transfer dynamics during cryogen spray cooling[J]. Phys Med Biol, 2003, 48(14): 2169-2181. |
[47] | TORRES J H, TUNNELL J W, PIKKULA B M, et al. An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application[J]. Lasers Surg Med, 2001, 28(5): 477-486. |
[48] | TUNNELL J W, CHANG D W, JOHNSTON C, et al. Effects of cryogen spray cooling and high rdiant exposures on selective vascular injury during laser irradiation of human skin[J]. Arch Dermatol, 2003, 139(1): 743-750. |
[49] | TUNNELL J W, TORRES J H, ANVARI B. Methodology for Estimation of Time-Dependent Surface Heat Flux due to Cryogen Spray Cooling[J]. Ann Biomed Eng, 2002, 30(1): 19-33. |
[50] | MAJARON B, AGUILARA G, BASINGERA B, et al. Sequential cryogen spraying for heat flux control at the skin surface[C]. Proc. SPIE, 2001 4244(4):74-81. |
[51] | MAJARON B, SVAASAND L O, AGUILAR G, et al. Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment[J]. Phys Med Biol, 2002, 47(18): 3275-3288. |
[52] | AGUILAR G, WANG G X, NELSON J S. Dynamic behavior of cryogen spray cooling: effects of spurt duration and spray distance[J]. Lasers Surg Med, 2003, 32(2): 152-159. |
[53] | 周致富, 吴威涛, 王国祥, 等. 制冷剂闪蒸瞬态喷雾冷却表面温度的快速测量[J]. 化工学报, 2011, 62(11): 2691-2695.ZHOU Z F, WU W T, WANG G X, et al. Thin-film thermocouples for rapid measurement of transient surface temperature in cryogen spray cooling[J]. CIESC Journal, 2011, 62(11): 2691-2695. |
[54] | ZHOU Z F, XU T Y, CHEN B. Algorithms for the estimation of transient surface heat flux during ultra-fast surface cooling[J]. International Journal of Heat and Mass Transfer, 2016, 100: 1-10. |
[55] | TIAN J M, CHEN B, ZHOU Z F. Methodology of surface heat flux estimation for 2D multi-layer mediums[J]. International Journal of Heat and Mass Transfer, 2017, : 675-687. |
[56] | AGUILAR G, VU H, NELSON J S. Influence of angle between the nozzle and skin surface on the heat flux and overall heat extraction during cryogen spray cooling[J]. Phys. Med. Biol, 2004, 49(10): N147-N153. |
[57] | WANG G X, AGUILAR G, NELSON J S. Dynamic behavior of cryogen spray cooling:effect of spray distance[C]. ASME National Heat Transfer Conference, 2003. |
[58] | JIA W, AGUILAR G, WANG G X, et al. Heat-transfer dynamics during cryogen spray cooling of substrate at different initial temperatures[J]. Phys. Med. Biol. , 2004, 49(23): 5295-5308. |
[59] | JIA W, AGUILAR G, VERKRUYSSE W, et al. Improvement of port wine stain laser therapy by skin preheating prior to cryogen spray cooling: a numerical simulation[J]. Lasers Surg Med, 2006, 38(2): 155-162. |
[60] | FRANCO W, LIU J, WANG G X, et al. Radial and temporal variations in surface heat transfer during cryogen spray cooling[J]. Phys Med Biol, 2005, 50(2): 387-397. |
[61] | FRANCO W, WANG G X, NELSON J S, et al. Radial heat transfer dynamics during cryogen spray cooling[C]. ASME International Mechanical Engineering Congress and Exposition, 2004. |
[62] | FRANCO W, LIU J, ROMERO-MENDEZ R, et al. Extent of lateral epidermal protection afforded by a cryogen spray against laser irradiation[J]. Lasers Surg Med, 2007, 39(5): 414-421. |
[63] | TORRES J H, NELSON J S, TANENBAUM B S, et al. Estimation of Internal Skin Temperatures in Response to Cryogen Spray Cooling: Implications for Laser Therapy of Port Wine Stains[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 1058-1065. |
[64] | TUNNELL J W, CHANG D W, JOHNSTON C, et al. Effects of cryogen spray cooling and high radiant exposures on selective vascular injury during laser irradiation of human skin[J]. Arch Dermatol, 2003, 139(6): 743-750. |
[65] | TUNNELL J W, NELSON J S, TORRES J H, et al. Epidermal protection with cryogen spray cooling during high fluence pulsed dye laser irradiation: an ex vivo study[J]. Lasers in Surgery and Medicine, 2000, 27(10): 373-383. |
[66] | PIKKULA B M, TUNNELL J W, ANVARI B. Methodology for characterizing heat removal mechanism in human skin during cryogen spray cooling[J]. Ann Biomed Eng, 2003, 31(5): 493-504. |
[67] | AGUILAR G, VERKRUYSSE W, MAJARON B, et al. Measurement of Heat Flux and Heat Transfer Coefficient during Continuous Cryogen Spray Cooling for Laser Dermatologic Surgery[J]. IEEE Journal on Selected Topics in Quantum Electronics, 2001, 7(6): 1013-1021. |
[68] | WANG R, ZHOU Z F, CHEN B, et al. Surface heat transfer characteristics of R404A pulsed spray cooling with an expansion-chambered nozzle for laser dermatology[J]. International Journal of Refrigeration, 2015, 60: 206-216. |
[69] | RAMIREZ-SAN-JUAN J C, CHOI B, FRANCO W, et al. Effect of ambient humidity on light transmittance through skin phantoms during cryogen spray cooling[J]. Physics in Medicine and Biology, 2006, 51(1): 113-120. |
[70] | MAJARON B, KIMEL S, VERKRUYSSE W, et al. Cryogen spray cooling in laser dermatology: Effects of ambient humidity and frost formation[J]. Lasers Surg Med, 2001, 28(5): 469-476. |
[71] | VU H, AGUILAR G, STUART NELSON J. Passive mass deposition control of cryogen sprays through the use of wire meshes[J]. Lasers Surg Med, 2004, 34(4): 329-334. |
[72] | BASINGER B, AGUILAR G, NELSON J S. Effect of skin indentation on heat transfer during cryogen spray cooling[J]. Lasers Surg Med, 2004, 34(2): 155-163. |
[73] | TUQAN A T, KELLY K M, AGUILAR G, et al. Evaluation of single versus multiple cryogen spray cooling spurts on in vitro model human skin[J]. Lasers Med Sci, 2005, 20(2): 80-86. |
[74] | KAO B, KELLY K M, AGUILAR G, et al. Evaluation of cryogen spray cooling exposure on in vitro model human skin[J]. Lasers Surg Med, 2004, 34(2): 146-154. |
[75] | TIAN J M, CHEN B, LI D, et al. Transient spray cooling: Similarity of dynamic heat flux for different cryogens, nozzles and substrates[J]. International Journal of Heat & Mass Transfer, 2017, 108: 561-571. |
[76] | CHEN J K, GHASRI P, AGUILAR G, et al. An overview of clinical and experimental treatment modalities for port wine stains[J]. J Am Acad Dermatol, 2012, : . |
[77] | AGUILAR G, CHOI B, BROEKGAARDEN M, et al. An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains[J]. Ann Biomed Eng, 2012, 40(2): 486-506. |
[78] | DAI T, PIKKULA B M, TUNNELL J W, et al. Thermal response of human skin epidermis to 595-nm laser irradiation at high incident dosages and long pulse durations in conjunction with cryogen spray cooling: An ex-vivo study[J]. Lasers Surg Med, 2003, 33(1): 16-24. |
[79] | DAI T, YASEEN M A, DIAGARADJANE P, et al. Comparative study of cryogen spray cooling with R-134a and R-404a: implications for laser treatment of dark human skin[J]. J Biomed Opt, 2006, 11(4): 041116. |
[80] | ZHOU Z F, CHEN B, WANG R, et al. Comparative investigation on the spray characteristics and heat transfer dynamics of pulsed spray cooling with volatile cryogens[J]. Experimental Thermal and Fluid Science, 2017, 82: 189-197. |
[81] | LI D, CHEN B, WU W J, et al. Multi-scale modeling of tissue freezing during cryogen spray cooling with R134a, R407c and R404a[J]. Applied Thermal Engineering, 2014, 73(2): 1489-1500. |
[82] | AGUILAR G, SVAASAND L O, NELSON J S. Effects of hypobaric pressure on human skin: feasibility study for port wine stain laser therapy (part I)[J]. Lasers Surg Med, 2005, 36(2): 124-129. |
[83] | AGUILAR G, FRANCO W, LIU J, et al. Effects of hypobaric pressure on human skin: implications for cryogen spray cooling (part Ⅱ)[J]. Lasers Surg Med, 2005, 36(2): 130-135. |
[84] | FRANCO W, CHILDERS M, STUART NELSON J, et al. Laser surgery of port wine stains using local vaccum pressure: Changes in calculated energy deposition (Part Ⅱ)[J]. Lasers Surg Med, 2007, 39(2): 118-127. |
[85] | ZHOU Z F, CHEN B, WANG R, et al. Coupling effect of hypobaric pressure and spray distance on heat transfer dynamics of R134a pulsed flashing spray cooling[J]. Experimental Thermal and Fluid Science, 2016, 70: 96-104. |
[86] | ZHOU Z F, WANG R, CHEN B, et al. Heat transfer characteristics during pulsed spray cooling with R404A at different spray distances and back pressures[J]. Applied Thermal Engineering, 2016, 102: 813-821. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[8] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[9] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[10] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[11] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[12] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[13] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[14] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[15] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||