CIESC Journal ›› 2018, Vol. 69 ›› Issue (1): 69-75.DOI: 10.11949/j.issn.0438-1157.20170992
Previous Articles Next Articles
FENG Jianpeng1,2, ZHANG Xiangping1, SHANG Dawei1,2, GAO Hongshuai1
Received:
2017-05-08
Revised:
2017-08-30
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20170992
Supported by:
supported by the National Science Fund for Distinguished Young Scholars (21425625), the National Natural Science Foundation of China (51574215) and the Key Research and Development Program of Shanxi Province in China (201603D312003).
冯建朋1,2, 张香平1, 尚大伟1,2, 高红帅1
通讯作者:
张香平
基金资助:
国家杰出青年科学基金项目(21425625);国家自然科学基金面上项目(51574215);山西省重点研发计划重点项目(201603D312003)。
CLC Number:
FENG Jianpeng, ZHANG Xiangping, SHANG Dawei, GAO Hongshuai. Review and prospect of CO2 electro-reduction in ionic liquids[J]. CIESC Journal, 2018, 69(1): 69-75.
冯建朋, 张香平, 尚大伟, 高红帅. 离子液体中电化学还原CO2研究评述与展望[J]. 化工学报, 2018, 69(1): 69-75.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170992
[1] | MITROVI? M, MALONE A. Carbon capture and storage (CCS) demonstration projects in Canada[J]. Energy Procedia, 2011, 4:5685-5691. |
[2] | SAHU G C, BANDYOPADHYAY S, FOO D C Y, et al. Targeting for optimal grid-wide deployment of carbon capture and storage (CCS) technology[J]. Process Safety and Environmental Protection, 2014, 92(6):835-848. |
[3] | SWAIN P K, DAS L M, NAIK S N. Biomass to liquid:a prospective challenge to research and development in 21st century[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9):4917-4933. |
[4] | BALIBAN R C, ELIA J A, FLOUDAS C A. Novel natural gas to liquids processes:process synthesis and global optimization strategies[J]. AIChE J., 2013, 59(2):505-531. |
[5] | SALKUYEH Y K, ADAMS Ⅱ T A. Combining coal gasification, natural gas reforming, and external carbonless heat for efficient production of gasoline and diesel with CO2 capture and sequestration[J]. Energy Conversion & Management, 2013, 74(10):492-504. |
[6] | ZHANG W N. Automotive fuels from biomass via gasification[J]. Fuel Processing Technology, 2010, 91(8):866-876. |
[7] | CENTI G, PERATHONER S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels[J]. Catal. Today, 2009, 148(3/4):191-205. |
[8] | LIU C J. Do we have a rapid solution for CO2 utilization? A perspective from China[J]. Greenh. Gases, 2012, 2(2):75-76. |
[9] | WANG W, WANG S P, MA X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7):3703-3727. |
[10] | SAEIDI S, AMIN N A S, RAHIMPOUR M R. Hydrogenation of CO2 to value-added products-a review and potential future developments[J]. Journal of CO2 Utilization, 2014, 5:66-81. |
[11] | LIU C J, YE J Y, JIANG J J, et al. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane[J]. ChemCatChem, 2011, 3(3):529-541. |
[12] | PAKHARE D, SPIVEY J. A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chemical Society Reviews, 2014, 43(22):7813-7837. |
[13] | NOURELDIN M M B, ELBASHIR N O, GABRIEL K J, et al. A Process integration approach to the assessment of CO2 fixation through dry reforming[J]. ACS Sustain. Chem. Eng., 2015, 3(4):625-636. |
[14] | COSTENTIN C, ROBERT M, SAVEANT J M. Catalysis of the electrochemical reduction of carbon dioxide[J]. Chemical Society Reviews, 2013, 42(6):2423-2436. |
[15] | QIAO J L, LIU Y Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2013, 43(2):631-675. |
[16] | FIGUEIREDO M C, LEDEZMA-YANEZ I, KOPER M T M. In situ spectroscopic study of CO2 electroreduction at copper electrodes in acetonitrile[J]. ACS Catal., 2016, 6(4):2382-2392. |
[17] | VARLEY J B, HANSEN H A, AMMITZBOLL N L, et al. Ni-Fe-S cubanesin CO2 reduction electrocatalysis:a DFT study[J]. ACS Catal., 2013, 3(11):2640-2643. |
[18] | ROBERTS F S, KUHL K P, NILSSON A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts[J]. Angewandte Chemie-International Edition, 2015, 54(17):5179-5182. |
[19] | LU Q, ROSEN J, JIAO F. Nanostructured metallic electrocatalysts for carbon dioxide reduction[J]. ChemCatChem, 2015, 7(1):38-47. |
[20] | GAO S, LIN Y, JIAO X C, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529(7584):68-71. |
[21] | COLE E B, LAKKARAJU P S, RAMPULLA D M, et al. Using a one-electron shuttle for the multielectron reduction of CO2 to methanol:kinetic, mechanistic, and structural insights[J]. Journal of the American Chemical Society, 2010, 132(33):11539-11551. |
[22] | GAO S, JIAO X C, SUN Z T, et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate[J]. Angewandte Chemie-International Edition, 2016, 55(2):698-702. |
[23] | WISHART J F. Energy applications of ionic liquids[J]. Energy & Environmental Science, 2009, 2(9):956-961. |
[24] | SEDDON K R. Ionic liquids:a taste of the future[J]. Nat. Mater., 2003, 2(6):363-365. |
[25] | ZHANG S J, HUO F. Angstrom science:exploring aggregates from a new viewpoint[J]. Green Energy & Environment, 2016, 1(1):75-78. |
[26] | ROSEN B A, SALEHI-KHOJIN A, THORSON M R, et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials[J]. Science, 2011, 334(6056):643-644. |
[27] | WANG C M, LUO H M, LUO X Y, et al. Equimolar CO2 capture by imidazolium-based ionic liquids and superbase systems[J]. Green Chem., 2010, 12(11):2019-2023. |
[28] | WANG C M, GUO Y, ZHU X, et al. Highly efficient CO2 capture by tunable alkanolamine-based ionic liquids with multidentate cation coordination[J]. Chemical Communications, 2012, 48(52):6526-6528. |
[29] | DING F, HE X, LUO X Y, et al. Highly efficient CO2 capture by carbonyl-containing ionic liquids through Lewis acid-base and cooperative C-H…O hydrogen bonding interaction strengthened by the anion[J]. Chemical Communications, 2014, 50(95):15041-15044. |
[30] | LUO X Y, GUO Y, DING F, et al. Significant improvements in CO2 capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions[J]. Angewandte Chemie-International Edition, 2014, 53(27):7053-7057. |
[31] | CADENA C, ANTHONY J L, SHAH J K, et al. Why is CO2 so soluble in imidazolium-based ionic liquids?[J]. Journal of the American Chemical Society, 2004, 126(16):5300-5308. |
[32] | WHIPPLE D T, KENIS P J A. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction[J]. J. Physchem. Lett., 2010, 1(24):3451-3458. |
[33] | 陶映初, 吴少晖, 张曦. CO2电化学还原研究进展[J]. 化学通报, 2001, (5):272-277. TAO Y C, WU S H, ZHANG X. Progress in CO2 electrochemical reduction[J]. Chem. Bull., 2001, (5):272-277. |
[34] | INNOCENT B, PASQUIER D, ROPITAL F, et al. FTIR spectroscopy study of the reduction of carbon dioxide on lead electrode in aqueous medium[J]. Appl. Catal. B-Environ., 2010, 94(3/4):219-224. |
[35] | 魏文英, 尹燕华, 韩金玉. 水溶性介质中CO2电催化还原研究进展[J]. 化工进展, 2007, 26(2):2-6. WEI W Y, YIN Y H, HAN J Y. Progress in electrocatalytic reduction of CO2 in aqueous medium[J]. Chem. Ind. Eng. Prog., 2007, 26(2):2-6. |
[36] | ROSEN B A, HAAN J L, MUKHERJEE P, et al. In situ spectroscopic examination of a low overpotential pathway for carbon dioxide conversion to carbon monoxide[J]. J. Phys. Chem. C, 2012, 116(29):15307-15312. |
[37] | YANG D W, LI Q Y, SHEN F X, et al. Electrochemical impedance studies of CO2 reduction in ionic liquid/organic solvent electrolyte on Au electrode[J]. Electrochimica Acta, 2015, 189:32-37. |
[38] | MARTINDALE B C M, COMPTON R G. Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid[J]. Chemical Communications, 2012, 48(52):6487-6489. |
[39] | CHOI J, BENEDETTI T M, JALILI R, et al. High performance Fe porphyrin/ionic liquid Co-catalyst for electrochemical CO2 reduction[J]. Chemistry-a European Journal, 2016, 22(40):14158-14161. |
[40] | BARROSSE-ANTLE L E, COMPTON R G. Reduction of carbon dioxide in 1-butyl-3-methylimidazolium acetate[J]. Chemical Communications, 2009, 25:3744-3746. |
[41] | SNUFFIN L L, WHALEY L W, YU L. Catalytic electrochemical reduction of CO2 in ionic liquid EMIMBF3Cl[J]. J. Electrochem. Soc., 2011, 158(9):F155-F158. |
[42] | ROSEN J, HUTCHINGS G S, LU Q, et al. Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces[J]. ACS Catal., 2015, 5(7):4293-4299. |
[43] | SUN L Y, RAMESHA G K, KAMAT P V, et al. Switching the reaction course of electrochemical CO2 reduction with ionic liquids[J]. Langmuir, 2014, 30(21):6302-6308. |
[44] | ZHAO S F, HORNE M, BOND A M, et al. Is the imidazolium cation a unique promoter for electrocatalytic reduction of carbon dioxide?[J]. J. Phys. Chem. C, 2016, 120(42):23989-24001. |
[45] | TANNER E E L, BATCHELOR-MCAULEY C, COMPTON R G. Carbon dioxide reduction in room-temperature ionic liquids:the effect of the choice of electrode material, cation, and anion[J]. J. Phys. Chem. C, 2016, 120(46):26442-26447. |
[46] | OH Y, HU X L. Ionic liquids enhance the electrochemical CO2 reduction catalyzed by MoO2[J]. Chemical Communications, 2015, 51(71):13698-13701. |
[47] | ASADI M, KIM K, LIU C, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid[J]. Science, 2016, 353(6298):467-470. |
[48] | HOLLINGSWORTH N, TAYLOR S F R, GALANTE M T, et al. Reduction of carbon dioxide to formate at low overpotential using a superbase ionic liquid[J]. Angewandte Chemie-International Edition, 2015, 54(47):14164-14168. |
[49] | ZHU Q G, MA J, KANG X C, et al. Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture[J]. Angewandte Chemie-International Edition, 2016, 55(31):9012-9016. |
[50] | WATKINS J D, BOCARSLY A B. Direct reduction of carbon dioxide to formate in high-gas-capacity ionic liquids at post-transition-metal electrodes[J]. ChemSusChem, 2014, 7(1):284. |
[51] | HUAN T N, SIMON P, ROUSSE G, et al. Porous dendritic copper:an electrocatalyst for highly selective CO2 reduction to formate in water/ionic liquid electrolyte[J]. Chemical Science, 2017, 8(1):742-747. |
[52] | WANG Y Q, HATAKEYAMA M, OGATA K, et al. Activation of CO2 by ionic liquid EMIM-BF4 in the electrochemical system:a theoretical study[J]. Physical Chemistry Chemical Physics, 2015, 17(36):23521-23531. |
[53] | LU W W, JIA B, CUI B L, et al. Efficient photoelectrochemical reduction of CO2 to formic acid with functionalized ionic liquid as absorbent and electrolyte[J]. Angewandte Chemie, 2017, 56(39):11851-11854. |
[54] | JELETIC M S, MOCK M T, APPEL A M, et al. A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions[J]. Journal of the American Chemical Society, 2013, 135(31):11533-11536. |
[55] | CEVASCO G, CHIAPPE C. Are ionic liquids a proper solution to current environmental challenges?[J]. Green Chem., 2014, 16(5):2375-2385. |
[56] | ALVAREZ-GUERRA M, ALBO J, ALVAREZ-GUERRA E, et al. Ionic liquids in the electrochemical valorisation of CO2[J]. Energy & Environmental Science, 2015, 8(9):2574-2599. |
[57] | BENSON E E, KUBIAK C P, SATHRUM A J, et al. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels[J]. Chemical Society Reviews, 2009, 38(1):89-99. |
[1] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[2] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[3] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[4] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[5] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[8] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[9] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[10] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[11] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[12] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[13] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[14] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[15] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||