[1] |
CHOWDHURY F A, YAMADA H, HIGASHⅡ T, et al. CO2 capture by tertiary amine absorbents:a performance comparison study[J]. Industrial & Engineering Chemistry Research, 2013, 52(24):8323-8331.
|
[2] |
GHIASI M M, MOHAMMADI A H. Rigorous modeling of CO2 equilibrium absorption in MEA, DEA, and TEA aqueous solutions[J]. Journal of Natural Gas Science & Engineering, 2014, 18(5):39-46.
|
[3] |
ZENG S, ZHANG X, BAI L, et al. Ionic-liquid-based CO2 capture systems:structure, interaction and process[J]. Chemical Reviews, 2017, 117(14):9625-9673.
|
[4] |
BAKHTIARI N, AZIZIAN S. Adsorption of copper ion from aqueous solution by nanoporous MOF-5:a kinetic and equilibrium study[J]. Journal of Molecular Liquids, 2015, 206:114-118.
|
[5] |
CHEN C, KIM J, PARK D W, et al. Ethylenediamine grafting on a zeolite-like metal organic framework (ZMOF) for CO2 capture[J]. Materials Letters, 2013, 106:344-347.
|
[6] |
RADA Z H, ABID H R, SHANG J, et al. Effects of amino functionality on uptake of CO2, CH4 and selectivity of CO2/CH4 on titanium based MOFs[J]. Fuel, 2015, 160:318-327.
|
[7] |
KACEM M, PELLERANO M, DELEBARRE A. Pressure swing adsorption for CO2/N2 and CO2/CH4 separation:Comparison between activated carbons and zeolites performances[J]. Fuel Processing Technology, 2015, 138:271-283.
|
[8] |
GEORGE G, BHORIA N, ALHALLAQ S, et al. Polymer membranes for acid gas removal from natural gas[J]. Separation and Purification Technology, 2016, 158:333-356.
|
[9] |
汪东. 膜吸收法回收烟气中CO2的过程研究[J]. 化学工业与工程技术, 2014, 35(2):61-64. WANG D. Research on flue gas carbon capture with membrane absorption method[J]. Chemical Industry and Engineering Technology, 2014, 35(2):61-64.
|
[10] |
LIU H, LIU B, LIN L C, et al. A hybrid absorption-adsorption method to efficiently capture carbon[J]. Nature Communications, 2014, 5:5147.
|
[11] |
LEI Z, DAI C, SONG W. Adsorptive absorption:a preliminary experimental and modeling study on CO2 solubility[J]. Chemical Engineering Science, 2015, 127:260-268.
|
[12] |
陈光进. 化工热力学[M]. 北京:石油工业出版社, 2006. CHEN G J. Chemical Engineering Thermodynamics[M]. Beijing:Petroleum Industry Press, 2006.
|
[13] |
VARGAS D P, GIRALDO L, MORENO-PIRAJAN J C. CO2 adsorption on activated carbon honeycomb-monoliths:a comparison of Langmuir and Toth models[J]. International Journal of Molecular Sciences, 2012, 13(7):8388-8397.
|
[14] |
MENDES P A P, RODRIGUES A E, HORCAJADA P, et al. Single and multicomponent adsorption of hexane isomers in the microporous ZIF-8[J]. Microporous Mesoporous Mat., 2014, 194:146-156.
|
[15] |
AZIZIAN S, HAERIFAR M, BASIRI-PARSA J. Extended geometric method:a simple approach to derive adsorption rate constants of Langmuir-Freundlich kinetics[J]. Chemosphere, 2007, 68(11):2040-2046.
|
[16] |
ZHAO Z, CUI X, MA J, et al. Adsorption of carbon dioxide on alkali-modified zeolite 13X adsorbents[J]. International Journal of Greenhouse Gas Control, 2007, 1(3):355-359.
|
[17] |
PATEL N C, TEJA A S. A new cubic equation of state for fluids and fluid mixtures[J]. Chemical Engineering Science, 1982, 37:463-473.
|
[18] |
KURIHARA K, TOCHIGI K, KOJIMA K. Mixing rule containing regular-solution and residual excess free energy[J]. J. Chem. Eng. Japan, 1987, 20:227-231.
|
[19] |
MA Q L, CHEN G J, GUO T M. Modelling the gas hydrate formation of inhibitor containing systems[J]. Fluid Phase Equilibria, 2003, 205(2):291-302.
|
[20] |
WILSON G M. Vapor-liquid equilibria(Ⅺ):new expression for the excess Gibbs energy of mixing[J]. J. Am. Chem. Soc., 1964, 86:127-130.
|
[21] |
GUI X, TANG Z, FEI W. Solubility of CO2 in alcohols, glycols, ethers, and ketones at high pressures from (288.15 to 318.15) K[J]. Journal of Chemical & Engineering Data, 2011, 56(5):2420-2429.
|
[22] |
JOU F Y, DESHMUKH R D, OTTO F D, et al. Vapor-liquid equilibria of H2S and CO2 and ethylene glycol at elevated pressures[J]. Chemical Engineering Communications, 1990, 87(1):223-231.
|
[23] |
JOU F Y, OTTO F D, MATHER A E. Solubility of methane in glycols at elevated pressures[J]. Canadian Journal of Chemical Engineering, 1994, 72(1):130-133.
|
[24] |
ZHENG D Q, MA W D, WEI R, et al. Solubility study of methane, carbon dioxide and nitrogen in ethylene glycol at elevated temperatures and pressures[J]. Fluid Phase Equilibria, 1999, 155(2):277-286.
|
[25] |
ZHANG K, LIVELY R P, ZHANG C, et al. Exploring the framework hydrophobicity and flexibility of ZIF-8:from biofuel recovery to hydrocarbon separations[J]. J. Phys. Chem. Lett., 2013, 4(21):3618-3622.
|
[26] |
ZHU J, JIANG L, DAI C, et al. Gas adsorption in shaped zeolitic imidazolate framework-8[J]. Chinese Journal of Chemical Engineering, 2015, 23(8):1275-1282.
|
[27] |
ZHANG X X, XIAO P, ZHAN C H, et al. Separation of methane/ethylene gas mixtures using wet ZIF-8[J]. Industrial & Engineering Chemistry Research, 2015, 54(32):7890-7898.
|
[28] |
DANACI D, SINGH R, XIAO P, et al. Assessment of ZIF materials for CO2 capture from high pressure natural gas streams[J]. Chemical Engineering Journal, 2015, 280:486-493.
|
[29] |
PEREZ-PELLITERO J, AMROUCHE H, SIPERSTEIN F R, et al. Adsorption of CO2, CH4, and N2 on zeolitic imidazolate frameworks:experiments and simulations[J]. Chemistry, 2010, 16(5):1560-1571.
|
[30] |
WU X, HUANG J, CAI W, et al. Force field for ZIF-8 flexible frameworks:atomistic simulation of adsorption, diffusion of pure gases as CH4, H2, CO2 and N2[J]. RSC Adv., 2014, 4(32):16503-16511.
|
[31] |
刘煌. 吸收-水合及吸收-吸附耦合分离气体混合物应用基础研究[D]. 北京:中国石油大学(北京), 2015. LUI H. The research on the gas mixture using absorption-hydration and absorption-adsorption hybrid methods[D]. Beijing:China University of Petroleum, 2015.
|