[1] |
GE Z, SONG Z, GAO F. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10):3543-3562.
|
[2] |
RUSSELL E L, CHIANG L H, BRAATZ R D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis[J]. Chemometrics & Intelligent Laboratory Systems, 2000, 51(1):81-93.
|
[3] |
SANG W C, LEE C, LEE J M, et al. Fault detection and identification of nonlinear processes based on kernel PCA[J]. Chemometrics & Intelligent Laboratory Systems, 2005, 75(1):55-67.
|
[4] |
LI W, YUE H H, VALLE-CERVANTES S, et al. Recursive PCA for adaptive process monitoring[J]. Journal of Process Control, 2000, 10(5):471-486.
|
[5] |
GE Z, ZHANG M, SONG Z. Nonlinear process monitoring based on linear subspace and Bayesian inference[J]. Journal of Process Control, 2010, 20(5):676-688.
|
[6] |
HE Q P, WANG J. Statistics pattern analysis:a new process monitoring framework and its application to semiconductor batch processes[J]. AIChE Journal, 2015, 57 (1):107-121.
|
[7] |
WANG J, HE Q P. Multivariate statistical process monitoring based on statistics pattern analysis[J]. Industrial & Engineering Chemistry Research, 2010, 49(17):7858-7869.
|
[8] |
常鹏, 王普, 高学金,等. 基于统计量模式分析的MKPLS间歇过程监控与质量预报[J]. 仪器仪表学报, 2014, 35(6):1409-1416. CHANG P, WANG P, GAO X J, et al. Batch process monitoring and quality prediction based on statistics pattern analysis and MKPLS[J]. Chinese Journal of Scientific Instrument, 2014, 35(6):1409-1416.
|
[9] |
常鹏, 王普, 高学金. 基于统计量模式分析的T-KPLS间歇过程故障监控[J]. 化工学报, 2015,66(1):265-271. CHANG P, WANG P, GAO X J. Fault monitoring batch process based on statistics pattern analysis of T-KPLS[J]. CIESC Journal, 2015, 66(1):265-271.
|
[10] |
张汉元, 田学民, 邓晓刚. 基于SPA相似系数的故障识别方法[J]. 化工学报, 2013, 64(12):4503-4508. ZHANG H Y, TIAN X M, DENG X G. Fault identification method based on SPA similarity factor[J]. CIESC Journal, 2013, 64(12):4503-4508.
|
[11] |
SHEN Y, DING S X, HAGHANI A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of Process Control, 2012, 22(9):1567-1581.
|
[12] |
DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255.
|
[13] |
RAO C R. Sufficient statistics and minimum variance estimates[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1949, 45(2):213-218.
|
[14] |
COVER T M, THOMAS J A. Elements of Information Theory[M]. 2nd ed. Hoboken:John Wiley & Sons, 2012:221
|
[15] |
OLIVE D J. Statistical Theory and Inference[M]. New York:Springer International Publishing, 2014:101-122
|
[16] |
AYECH N, CHAKOUR C, HARKAT M F. New adaptive moving window PCA for process monitoring[J]. IFAC Proceedings Volumes, 2012, 45(20):606-611.
|
[17] |
SHANG J, CHEN M, JI H, et al. Recursive transformed component statistical analysis for incipient fault detection[J]. Automatica, 2017, 80:313-327.
|
[18] |
HAIMI H, MULAS M, CORONA F, et al. Adaptive data-derived anomaly detection in the activated sludge process of a large-scale wastewater treatment plant[J]. Engineering Applications of Artificial Intelligence, 2016, 52:65-80.
|
[19] |
FISHER R A. Statistical methods for research workers[M]//Breakthroughs in Statistics. New York:Springer, 1992:66-70.
|
[20] |
ŠKACH J, PUN?OCHÁ? I. Active fault detection:a comparison of probabilistic methods[C]//Journal of Physics:Conference Series. Bristol:IOP Publishing, 2015, 1742-6596.
|
[21] |
SEVERSON K, CHAIWATANODOM P, BRAATZ R D. Perspectives on process monitoring of industrial systems[J]. Annual Reviews in Control, 2016, 42:190-200.
|
[22] |
GE Z, SONG Z. Multivariate Statistical Process Control:Process Monitoring Methods and Applications[M]. New York:Springer Science & Business Media, 2012:18-20
|
[23] |
CHIANG L H, RUSSELL E L, BRAATZ R D. Fault Detection and Diagnosis in Industrial Systems[M]. London:Springer London, 2001:103-109
|
[24] |
LIU Y, ZHANG G, XU B. Compressive sparse principal component analysis for process supervisory monitoring and fault detection[J]. Journal of Process Control, 2017, 50:1-10.
|
[25] |
ZHANG K, SHARDT Y A W, CHEN Z, et al. Using the expected detection delay to assess the performance of different multivariate statistical process monitoring methods for multiplicative and drift faults[J]. ISA Transactions, 2017, 67:56-66.
|
[26] |
BAKDI A, KOUADRI A. A new adaptive PCA based thresholding scheme for fault detection in complex systems[J]. Chemometrics & Intelligent Laboratory Systems, 2017, 162:83-93.
|
[27] |
RUSSELL E L, CHIANG L H, BRAATZ R D. Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes[M]. New York:Springer Science & Business Media, 2012:84-90
|
[28] |
薄翠梅, 韩晓春, 易辉,等. 基于聚类选择k近邻的LLE算法及故障检测[J]. 化工学报, 2016, 67(3):925-930. BO C M, HAN X C, YI H, et al. Neighborhood selection of LLE based on cluster for fault detection[J]. CIESC Journal, 2016, 67(3):925-930.
|
[29] |
ZHANG Y. Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and support vector machine (SVM)[J]. Industrial & Engineering Chemistry Research, 2008, 47(18):6961-6971.
|
[30] |
BERNAL-DE-LÁZARO J M, LLANES-SANTIAGO O, PRIETO-MORENO A, et al. Enhanced dynamic approach to improve the detection of small-magnitude faults[J]. Chemical Engineering Science, 2016, 146:166-179
|